CircuitPython

Source code browser

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
/*
 * This file is part of the Micro Python project, http://micropython.org/
 *
 * The MIT License (MIT)
 *
 * Copyright (c) 2013, 2014 Damien P. George
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

#include <stdarg.h>
#include <stdio.h>
#include <string.h>
#include <assert.h>

#include "py/mpstate.h"
#include "py/nlr.h"
#include "py/parsenum.h"
#include "py/compile.h"
#include "py/objstr.h"
#include "py/objtuple.h"
#include "py/objtype.h"
#include "py/objlist.h"
#include "py/objmodule.h"
#include "py/objgenerator.h"
#include "py/smallint.h"
#include "py/runtime0.h"
#include "py/runtime.h"
#include "py/builtin.h"
#include "py/stackctrl.h"
#include "py/gc.h"

#if 0 // print debugging info
#define DEBUG_PRINT (1)
#define DEBUG_printf DEBUG_printf
#define DEBUG_OP_printf(...) DEBUG_printf(__VA_ARGS__)
#else // don't print debugging info
#define DEBUG_printf(...) (void)0
#define DEBUG_OP_printf(...) (void)0
#endif

const mp_obj_module_t mp_module___main__ = {
    .base = { &mp_type_module },
    .globals = (mp_obj_dict_t*)&MP_STATE_VM(dict_main),
};

void mp_init(void) {
    qstr_init();

    // no pending exceptions to start with
    MP_STATE_VM(mp_pending_exception) = MP_OBJ_NULL;

#if MICROPY_ENABLE_EMERGENCY_EXCEPTION_BUF
    mp_init_emergency_exception_buf();
#endif

    #if MICROPY_KBD_EXCEPTION
    // initialise the exception object for raising KeyboardInterrupt
    MP_STATE_VM(mp_kbd_exception).base.type = &mp_type_KeyboardInterrupt;
    MP_STATE_VM(mp_kbd_exception).traceback_alloc = 0;
    MP_STATE_VM(mp_kbd_exception).traceback_len = 0;
    MP_STATE_VM(mp_kbd_exception).traceback_data = NULL;
    MP_STATE_VM(mp_kbd_exception).args = mp_const_empty_tuple;
    #endif

    // call port specific initialization if any
#ifdef MICROPY_PORT_INIT_FUNC
    MICROPY_PORT_INIT_FUNC;
#endif

    // optimization disabled by default
    MP_STATE_VM(mp_optimise_value) = 0;

    // init global module stuff
    mp_module_init();

    // initialise the __main__ module
    mp_obj_dict_init(&MP_STATE_VM(dict_main), 1);
    mp_obj_dict_store(MP_OBJ_FROM_PTR(&MP_STATE_VM(dict_main)), MP_OBJ_NEW_QSTR(MP_QSTR___name__), MP_OBJ_NEW_QSTR(MP_QSTR___main__));

    // locals = globals for outer module (see Objects/frameobject.c/PyFrame_New())
    MP_STATE_CTX(dict_locals) = MP_STATE_CTX(dict_globals) = &MP_STATE_VM(dict_main);

    #if MICROPY_CAN_OVERRIDE_BUILTINS
    // start with no extensions to builtins
    MP_STATE_VM(mp_module_builtins_override_dict) = NULL;
    #endif

    #if MICROPY_FSUSERMOUNT
    // zero out the pointers to the user-mounted devices
    memset(MP_STATE_VM(fs_user_mount) + MICROPY_FATFS_NUM_PERSISTENT, 0,
           sizeof(MP_STATE_VM(fs_user_mount)) - MICROPY_FATFS_NUM_PERSISTENT);
    #endif

    #if MICROPY_PY_THREAD_GIL
    mp_thread_mutex_init(&MP_STATE_VM(gil_mutex));
    #endif

    MP_THREAD_GIL_ENTER();
}

void mp_deinit(void) {
    //mp_obj_dict_free(&dict_main);
    mp_module_deinit();

    // call port specific deinitialization if any
#ifdef MICROPY_PORT_INIT_FUNC
    MICROPY_PORT_DEINIT_FUNC;
#endif
}

mp_obj_t mp_load_name(qstr qst) {
    // logic: search locals, globals, builtins
    DEBUG_OP_printf("load name %s\n", qstr_str(qst));
    // If we're at the outer scope (locals == globals), dispatch to load_global right away
    if (MP_STATE_CTX(dict_locals) != MP_STATE_CTX(dict_globals)) {
        mp_map_elem_t *elem = mp_map_lookup(&MP_STATE_CTX(dict_locals)->map, MP_OBJ_NEW_QSTR(qst), MP_MAP_LOOKUP);
        if (elem != NULL) {
            return elem->value;
        }
    }
    return mp_load_global(qst);
}

mp_obj_t mp_load_global(qstr qst) {
    // logic: search globals, builtins
    DEBUG_OP_printf("load global %s\n", qstr_str(qst));
    mp_map_elem_t *elem = mp_map_lookup(&MP_STATE_CTX(dict_globals)->map, MP_OBJ_NEW_QSTR(qst), MP_MAP_LOOKUP);
    if (elem == NULL) {
        #if MICROPY_CAN_OVERRIDE_BUILTINS
        if (MP_STATE_VM(mp_module_builtins_override_dict) != NULL) {
            // lookup in additional dynamic table of builtins first
            elem = mp_map_lookup(&MP_STATE_VM(mp_module_builtins_override_dict)->map, MP_OBJ_NEW_QSTR(qst), MP_MAP_LOOKUP);
            if (elem != NULL) {
                return elem->value;
            }
        }
        #endif
        elem = mp_map_lookup((mp_map_t*)&mp_module_builtins_globals.map, MP_OBJ_NEW_QSTR(qst), MP_MAP_LOOKUP);
        if (elem == NULL) {
            if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) {
                mp_raise_msg(&mp_type_NameError, "name not defined");
            } else {
                nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_NameError,
                    "name '%q' is not defined", qst));
            }
        }
    }
    return elem->value;
}

mp_obj_t mp_load_build_class(void) {
    DEBUG_OP_printf("load_build_class\n");
    #if MICROPY_CAN_OVERRIDE_BUILTINS
    if (MP_STATE_VM(mp_module_builtins_override_dict) != NULL) {
        // lookup in additional dynamic table of builtins first
        mp_map_elem_t *elem = mp_map_lookup(&MP_STATE_VM(mp_module_builtins_override_dict)->map, MP_OBJ_NEW_QSTR(MP_QSTR___build_class__), MP_MAP_LOOKUP);
        if (elem != NULL) {
            return elem->value;
        }
    }
    #endif
    return MP_OBJ_FROM_PTR(&mp_builtin___build_class___obj);
}

void mp_store_name(qstr qst, mp_obj_t obj) {
    DEBUG_OP_printf("store name %s <- %p\n", qstr_str(qst), obj);
    mp_obj_dict_store(MP_OBJ_FROM_PTR(MP_STATE_CTX(dict_locals)), MP_OBJ_NEW_QSTR(qst), obj);
}

void mp_delete_name(qstr qst) {
    DEBUG_OP_printf("delete name %s\n", qstr_str(qst));
    // TODO convert KeyError to NameError if qst not found
    mp_obj_dict_delete(MP_OBJ_FROM_PTR(MP_STATE_CTX(dict_locals)), MP_OBJ_NEW_QSTR(qst));
}

void mp_store_global(qstr qst, mp_obj_t obj) {
    DEBUG_OP_printf("store global %s <- %p\n", qstr_str(qst), obj);
    mp_obj_dict_store(MP_OBJ_FROM_PTR(MP_STATE_CTX(dict_globals)), MP_OBJ_NEW_QSTR(qst), obj);
}

void mp_delete_global(qstr qst) {
    DEBUG_OP_printf("delete global %s\n", qstr_str(qst));
    // TODO convert KeyError to NameError if qst not found
    mp_obj_dict_delete(MP_OBJ_FROM_PTR(MP_STATE_CTX(dict_globals)), MP_OBJ_NEW_QSTR(qst));
}

mp_obj_t mp_unary_op(mp_uint_t op, mp_obj_t arg) {
    DEBUG_OP_printf("unary " UINT_FMT " %p\n", op, arg);

    if (op == MP_UNARY_OP_NOT) {
        // "not x" is the negative of whether "x" is true per Python semantics
        return mp_obj_new_bool(mp_obj_is_true(arg) == 0);
    } else if (MP_OBJ_IS_SMALL_INT(arg)) {
        mp_int_t val = MP_OBJ_SMALL_INT_VALUE(arg);
        switch (op) {
            case MP_UNARY_OP_BOOL:
                return mp_obj_new_bool(val != 0);
            case MP_UNARY_OP_HASH:
                return arg;
            case MP_UNARY_OP_POSITIVE:
                return arg;
            case MP_UNARY_OP_NEGATIVE:
                // check for overflow
                if (val == MP_SMALL_INT_MIN) {
                    return mp_obj_new_int(-val);
                } else {
                    return MP_OBJ_NEW_SMALL_INT(-val);
                }
            case MP_UNARY_OP_INVERT:
                return MP_OBJ_NEW_SMALL_INT(~val);
            default:
                assert(0);
                return arg;
        }
    } else if (op == MP_UNARY_OP_HASH && MP_OBJ_IS_STR_OR_BYTES(arg)) {
        // fast path for hashing str/bytes
        GET_STR_HASH(arg, h);
        if (h == 0) {
            GET_STR_DATA_LEN(arg, data, len);
            h = qstr_compute_hash(data, len);
        }
        return MP_OBJ_NEW_SMALL_INT(h);
    } else {
        mp_obj_type_t *type = mp_obj_get_type(arg);
        if (type->unary_op != NULL) {
            mp_obj_t result = type->unary_op(op, arg);
            if (result != MP_OBJ_NULL) {
                return result;
            }
        }
        if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) {
            mp_raise_TypeError("unsupported type for operator");
        } else {
            mp_raise_TypeError_varg(
                "unsupported type for %q: '%s'",
                mp_unary_op_method_name[op], mp_obj_get_type_str(arg));
        }
    }
}

mp_obj_t mp_binary_op(mp_uint_t op, mp_obj_t lhs, mp_obj_t rhs) {
    DEBUG_OP_printf("binary " UINT_FMT " %p %p\n", op, lhs, rhs);

    // TODO correctly distinguish inplace operators for mutable objects
    // lookup logic that CPython uses for +=:
    //   check for implemented +=
    //   then check for implemented +
    //   then check for implemented seq.inplace_concat
    //   then check for implemented seq.concat
    //   then fail
    // note that list does not implement + or +=, so that inplace_concat is reached first for +=

    // deal with is
    if (op == MP_BINARY_OP_IS) {
        return mp_obj_new_bool(lhs == rhs);
    }

    // deal with == and != for all types
    if (op == MP_BINARY_OP_EQUAL || op == MP_BINARY_OP_NOT_EQUAL) {
        if (mp_obj_equal(lhs, rhs)) {
            if (op == MP_BINARY_OP_EQUAL) {
                return mp_const_true;
            } else {
                return mp_const_false;
            }
        } else {
            if (op == MP_BINARY_OP_EQUAL) {
                return mp_const_false;
            } else {
                return mp_const_true;
            }
        }
    }

    // deal with exception_match for all types
    if (op == MP_BINARY_OP_EXCEPTION_MATCH) {
        // rhs must be issubclass(rhs, BaseException)
        if (mp_obj_is_exception_type(rhs)) {
            if (mp_obj_exception_match(lhs, rhs)) {
                return mp_const_true;
            } else {
                return mp_const_false;
            }
        } else if (MP_OBJ_IS_TYPE(rhs, &mp_type_tuple)) {
            mp_obj_tuple_t *tuple = MP_OBJ_TO_PTR(rhs);
            for (mp_uint_t i = 0; i < tuple->len; i++) {
                rhs = tuple->items[i];
                if (!mp_obj_is_exception_type(rhs)) {
                    goto unsupported_op;
                }
                if (mp_obj_exception_match(lhs, rhs)) {
                    return mp_const_true;
                }
            }
            return mp_const_false;
        }
        goto unsupported_op;
    }

    if (MP_OBJ_IS_SMALL_INT(lhs)) {
        mp_int_t lhs_val = MP_OBJ_SMALL_INT_VALUE(lhs);
        if (MP_OBJ_IS_SMALL_INT(rhs)) {
            mp_int_t rhs_val = MP_OBJ_SMALL_INT_VALUE(rhs);
            // This is a binary operation: lhs_val op rhs_val
            // We need to be careful to handle overflow; see CERT INT32-C
            // Operations that can overflow:
            //      +       result always fits in mp_int_t, then handled by SMALL_INT check
            //      -       result always fits in mp_int_t, then handled by SMALL_INT check
            //      *       checked explicitly
            //      /       if lhs=MIN and rhs=-1; result always fits in mp_int_t, then handled by SMALL_INT check
            //      %       if lhs=MIN and rhs=-1; result always fits in mp_int_t, then handled by SMALL_INT check
            //      <<      checked explicitly
            switch (op) {
                case MP_BINARY_OP_OR:
                case MP_BINARY_OP_INPLACE_OR: lhs_val |= rhs_val; break;
                case MP_BINARY_OP_XOR:
                case MP_BINARY_OP_INPLACE_XOR: lhs_val ^= rhs_val; break;
                case MP_BINARY_OP_AND:
                case MP_BINARY_OP_INPLACE_AND: lhs_val &= rhs_val; break;
                case MP_BINARY_OP_LSHIFT:
                case MP_BINARY_OP_INPLACE_LSHIFT: {
                    if (rhs_val < 0) {
                        // negative shift not allowed
                        mp_raise_ValueError("negative shift count");
                    } else if (rhs_val >= (mp_int_t)BITS_PER_WORD || lhs_val > (MP_SMALL_INT_MAX >> rhs_val) || lhs_val < (MP_SMALL_INT_MIN >> rhs_val)) {
                        // left-shift will overflow, so use higher precision integer
                        lhs = mp_obj_new_int_from_ll(lhs_val);
                        goto generic_binary_op;
                    } else {
                        // use standard precision
                        lhs_val <<= rhs_val;
                    }
                    break;
                }
                case MP_BINARY_OP_RSHIFT:
                case MP_BINARY_OP_INPLACE_RSHIFT:
                    if (rhs_val < 0) {
                        // negative shift not allowed
                        mp_raise_ValueError("negative shift count");
                    } else {
                        // standard precision is enough for right-shift
                        if (rhs_val >= (mp_int_t)BITS_PER_WORD) {
                            // Shifting to big amounts is underfined behavior
                            // in C and is CPU-dependent; propagate sign bit.
                            rhs_val = BITS_PER_WORD - 1;
                        }
                        lhs_val >>= rhs_val;
                    }
                    break;
                case MP_BINARY_OP_ADD:
                case MP_BINARY_OP_INPLACE_ADD: lhs_val += rhs_val; break;
                case MP_BINARY_OP_SUBTRACT:
                case MP_BINARY_OP_INPLACE_SUBTRACT: lhs_val -= rhs_val; break;
                case MP_BINARY_OP_MULTIPLY:
                case MP_BINARY_OP_INPLACE_MULTIPLY: {

                    // If long long type exists and is larger than mp_int_t, then
                    // we can use the following code to perform overflow-checked multiplication.
                    // Otherwise (eg in x64 case) we must use mp_small_int_mul_overflow.
                    #if 0
                    // compute result using long long precision
                    long long res = (long long)lhs_val * (long long)rhs_val;
                    if (res > MP_SMALL_INT_MAX || res < MP_SMALL_INT_MIN) {
                        // result overflowed SMALL_INT, so return higher precision integer
                        return mp_obj_new_int_from_ll(res);
                    } else {
                        // use standard precision
                        lhs_val = (mp_int_t)res;
                    }
                    #endif

                    if (mp_small_int_mul_overflow(lhs_val, rhs_val)) {
                        // use higher precision
                        lhs = mp_obj_new_int_from_ll(lhs_val);
                        goto generic_binary_op;
                    } else {
                        // use standard precision
                        return MP_OBJ_NEW_SMALL_INT(lhs_val * rhs_val);
                    }
                    break;
                }
                case MP_BINARY_OP_FLOOR_DIVIDE:
                case MP_BINARY_OP_INPLACE_FLOOR_DIVIDE:
                    if (rhs_val == 0) {
                        goto zero_division;
                    }
                    lhs_val = mp_small_int_floor_divide(lhs_val, rhs_val);
                    break;

                #if MICROPY_PY_BUILTINS_FLOAT
                case MP_BINARY_OP_TRUE_DIVIDE:
                case MP_BINARY_OP_INPLACE_TRUE_DIVIDE:
                    if (rhs_val == 0) {
                        goto zero_division;
                    }
                    return mp_obj_new_float((mp_float_t)lhs_val / (mp_float_t)rhs_val);
                #endif

                case MP_BINARY_OP_MODULO:
                case MP_BINARY_OP_INPLACE_MODULO: {
                    if (rhs_val == 0) {
                        goto zero_division;
                    }
                    lhs_val = mp_small_int_modulo(lhs_val, rhs_val);
                    break;
                }

                case MP_BINARY_OP_POWER:
                case MP_BINARY_OP_INPLACE_POWER:
                    if (rhs_val < 0) {
                        #if MICROPY_PY_BUILTINS_FLOAT
                        lhs = mp_obj_new_float(lhs_val);
                        goto generic_binary_op;
                        #else
                        mp_raise_ValueError("negative power with no float support");
                        #endif
                    } else {
                        mp_int_t ans = 1;
                        while (rhs_val > 0) {
                            if (rhs_val & 1) {
                                if (mp_small_int_mul_overflow(ans, lhs_val)) {
                                    goto power_overflow;
                                }
                                ans *= lhs_val;
                            }
                            if (rhs_val == 1) {
                                break;
                            }
                            rhs_val /= 2;
                            if (mp_small_int_mul_overflow(lhs_val, lhs_val)) {
                                goto power_overflow;
                            }
                            lhs_val *= lhs_val;
                        }
                        lhs_val = ans;
                    }
                    break;

                power_overflow:
                    // use higher precision
                    lhs = mp_obj_new_int_from_ll(MP_OBJ_SMALL_INT_VALUE(lhs));
                    goto generic_binary_op;

                case MP_BINARY_OP_DIVMOD: {
                    if (rhs_val == 0) {
                        goto zero_division;
                    }
                    // to reduce stack usage we don't pass a temp array of the 2 items
                    mp_obj_tuple_t *tuple = MP_OBJ_TO_PTR(mp_obj_new_tuple(2, NULL));
                    tuple->items[0] = MP_OBJ_NEW_SMALL_INT(mp_small_int_floor_divide(lhs_val, rhs_val));
                    tuple->items[1] = MP_OBJ_NEW_SMALL_INT(mp_small_int_modulo(lhs_val, rhs_val));
                    return MP_OBJ_FROM_PTR(tuple);
                }

                case MP_BINARY_OP_LESS: return mp_obj_new_bool(lhs_val < rhs_val); break;
                case MP_BINARY_OP_MORE: return mp_obj_new_bool(lhs_val > rhs_val); break;
                case MP_BINARY_OP_LESS_EQUAL: return mp_obj_new_bool(lhs_val <= rhs_val); break;
                case MP_BINARY_OP_MORE_EQUAL: return mp_obj_new_bool(lhs_val >= rhs_val); break;

                default:
                    goto unsupported_op;
            }
            // TODO: We just should make mp_obj_new_int() inline and use that
            if (MP_SMALL_INT_FITS(lhs_val)) {
                return MP_OBJ_NEW_SMALL_INT(lhs_val);
            } else {
                return mp_obj_new_int(lhs_val);
            }
#if MICROPY_PY_BUILTINS_FLOAT
        } else if (mp_obj_is_float(rhs)) {
            mp_obj_t res = mp_obj_float_binary_op(op, lhs_val, rhs);
            if (res == MP_OBJ_NULL) {
                goto unsupported_op;
            } else {
                return res;
            }
#if MICROPY_PY_BUILTINS_COMPLEX
        } else if (MP_OBJ_IS_TYPE(rhs, &mp_type_complex)) {
            mp_obj_t res = mp_obj_complex_binary_op(op, lhs_val, 0, rhs);
            if (res == MP_OBJ_NULL) {
                goto unsupported_op;
            } else {
                return res;
            }
#endif
#endif
        }
    }

    /* deal with `in`
     *
     * NOTE `a in b` is `b.__contains__(a)`, hence why the generic dispatch
     * needs to go below with swapped arguments
     */
    if (op == MP_BINARY_OP_IN) {
        mp_obj_type_t *type = mp_obj_get_type(rhs);
        if (type->binary_op != NULL) {
            mp_obj_t res = type->binary_op(op, rhs, lhs);
            if (res != MP_OBJ_NULL) {
                return res;
            }
        }
        if (type->getiter != NULL) {
            /* second attempt, walk the iterator */
            mp_obj_t iter = mp_getiter(rhs);
            mp_obj_t next;
            while ((next = mp_iternext(iter)) != MP_OBJ_STOP_ITERATION) {
                if (mp_obj_equal(next, lhs)) {
                    return mp_const_true;
                }
            }
            return mp_const_false;
        }

        if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) {
            mp_raise_TypeError("object not iterable");
        } else {
            mp_raise_TypeError_varg(
                "'%s' object is not iterable", mp_obj_get_type_str(rhs));
        }
    }

    // generic binary_op supplied by type
    mp_obj_type_t *type;
generic_binary_op:
    type = mp_obj_get_type(lhs);
    if (type->binary_op != NULL) {
        mp_obj_t result = type->binary_op(op, lhs, rhs);
        if (result != MP_OBJ_NULL) {
            return result;
        }
    }

    // TODO implement dispatch for reverse binary ops

unsupported_op:
    if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) {
        mp_raise_TypeError("unsupported type for operator");
    } else {
        mp_raise_TypeError_varg(
            "unsupported types for %q: '%s', '%s'",
            mp_binary_op_method_name[op], mp_obj_get_type_str(lhs), mp_obj_get_type_str(rhs));
    }

zero_division:
    mp_raise_msg(&mp_type_ZeroDivisionError, "division by zero");
}

mp_obj_t mp_call_function_0(mp_obj_t fun) {
    return mp_call_function_n_kw(fun, 0, 0, NULL);
}

mp_obj_t mp_call_function_1(mp_obj_t fun, mp_obj_t arg) {
    return mp_call_function_n_kw(fun, 1, 0, &arg);
}

mp_obj_t mp_call_function_2(mp_obj_t fun, mp_obj_t arg1, mp_obj_t arg2) {
    mp_obj_t args[2];
    args[0] = arg1;
    args[1] = arg2;
    return mp_call_function_n_kw(fun, 2, 0, args);
}

// args contains, eg: arg0  arg1  key0  value0  key1  value1
mp_obj_t mp_call_function_n_kw(mp_obj_t fun_in, mp_uint_t n_args, mp_uint_t n_kw, const mp_obj_t *args) {
    // TODO improve this: fun object can specify its type and we parse here the arguments,
    // passing to the function arrays of fixed and keyword arguments

    DEBUG_OP_printf("calling function %p(n_args=" UINT_FMT ", n_kw=" UINT_FMT ", args=%p)\n", fun_in, n_args, n_kw, args);

    // get the type
    mp_obj_type_t *type = mp_obj_get_type(fun_in);

    // do the call
    if (type->call != NULL) {
        return type->call(fun_in, n_args, n_kw, args);
    }

    if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) {
        mp_raise_TypeError("object not callable");
    } else {
        mp_raise_TypeError_varg("'%s' object is not callable", mp_obj_get_type_str(fun_in));
    }
}

// args contains: fun  self/NULL  arg(0)  ...  arg(n_args-2)  arg(n_args-1)  kw_key(0)  kw_val(0)  ... kw_key(n_kw-1)  kw_val(n_kw-1)
// if n_args==0 and n_kw==0 then there are only fun and self/NULL
mp_obj_t mp_call_method_n_kw(mp_uint_t n_args, mp_uint_t n_kw, const mp_obj_t *args) {
    DEBUG_OP_printf("call method (fun=%p, self=%p, n_args=" UINT_FMT ", n_kw=" UINT_FMT ", args=%p)\n", args[0], args[1], n_args, n_kw, args);
    int adjust = (args[1] == MP_OBJ_NULL) ? 0 : 1;
    return mp_call_function_n_kw(args[0], n_args + adjust, n_kw, args + 2 - adjust);
}

// This function only needs to be exposed externally when in stackless mode.
#if !MICROPY_STACKLESS
STATIC
#endif
void mp_call_prepare_args_n_kw_var(bool have_self, mp_uint_t n_args_n_kw, const mp_obj_t *args, mp_call_args_t *out_args) {
    mp_obj_t fun = *args++;
    mp_obj_t self = MP_OBJ_NULL;
    if (have_self) {
        self = *args++; // may be MP_OBJ_NULL
    }
    uint n_args = n_args_n_kw & 0xff;
    uint n_kw = (n_args_n_kw >> 8) & 0xff;
    mp_obj_t pos_seq = args[n_args + 2 * n_kw]; // may be MP_OBJ_NULL
    mp_obj_t kw_dict = args[n_args + 2 * n_kw + 1]; // may be MP_OBJ_NULL

    DEBUG_OP_printf("call method var (fun=%p, self=%p, n_args=%u, n_kw=%u, args=%p, seq=%p, dict=%p)\n", fun, self, n_args, n_kw, args, pos_seq, kw_dict);

    // We need to create the following array of objects:
    //     args[0 .. n_args]  unpacked(pos_seq)  args[n_args .. n_args + 2 * n_kw]  unpacked(kw_dict)
    // TODO: optimize one day to avoid constructing new arg array? Will be hard.

    // The new args array
    mp_obj_t *args2;
    uint args2_alloc;
    uint args2_len = 0;

    // Try to get a hint for the size of the kw_dict
    uint kw_dict_len = 0;
    if (kw_dict != MP_OBJ_NULL && MP_OBJ_IS_TYPE(kw_dict, &mp_type_dict)) {
        kw_dict_len = mp_obj_dict_len(kw_dict);
    }

    // Extract the pos_seq sequence to the new args array.
    // Note that it can be arbitrary iterator.
    if (pos_seq == MP_OBJ_NULL) {
        // no sequence

        // allocate memory for the new array of args
        args2_alloc = 1 + n_args + 2 * (n_kw + kw_dict_len);
        args2 = m_new(mp_obj_t, args2_alloc);

        // copy the self
        if (self != MP_OBJ_NULL) {
            args2[args2_len++] = self;
        }

        // copy the fixed pos args
        mp_seq_copy(args2 + args2_len, args, n_args, mp_obj_t);
        args2_len += n_args;

    } else if (MP_OBJ_IS_TYPE(pos_seq, &mp_type_tuple) || MP_OBJ_IS_TYPE(pos_seq, &mp_type_list)) {
        // optimise the case of a tuple and list

        // get the items
        mp_uint_t len;
        mp_obj_t *items;
        mp_obj_get_array(pos_seq, &len, &items);

        // allocate memory for the new array of args
        args2_alloc = 1 + n_args + len + 2 * (n_kw + kw_dict_len);
        args2 = m_new(mp_obj_t, args2_alloc);

        // copy the self
        if (self != MP_OBJ_NULL) {
            args2[args2_len++] = self;
        }

        // copy the fixed and variable position args
        mp_seq_cat(args2 + args2_len, args, n_args, items, len, mp_obj_t);
        args2_len += n_args + len;

    } else {
        // generic iterator

        // allocate memory for the new array of args
        args2_alloc = 1 + n_args + 2 * (n_kw + kw_dict_len) + 3;
        args2 = m_new(mp_obj_t, args2_alloc);

        // copy the self
        if (self != MP_OBJ_NULL) {
            args2[args2_len++] = self;
        }

        // copy the fixed position args
        mp_seq_copy(args2 + args2_len, args, n_args, mp_obj_t);
        args2_len += n_args;

        // extract the variable position args from the iterator
        mp_obj_t iterable = mp_getiter(pos_seq);
        mp_obj_t item;
        while ((item = mp_iternext(iterable)) != MP_OBJ_STOP_ITERATION) {
            if (args2_len >= args2_alloc) {
                args2 = m_renew(mp_obj_t, args2, args2_alloc, args2_alloc * 2);
                args2_alloc *= 2;
            }
            args2[args2_len++] = item;
        }
    }

    // The size of the args2 array now is the number of positional args.
    uint pos_args_len = args2_len;

    // Copy the fixed kw args.
    mp_seq_copy(args2 + args2_len, args + n_args, 2 * n_kw, mp_obj_t);
    args2_len += 2 * n_kw;

    // Extract (key,value) pairs from kw_dict dictionary and append to args2.
    // Note that it can be arbitrary iterator.
    if (kw_dict == MP_OBJ_NULL) {
        // pass
    } else if (MP_OBJ_IS_TYPE(kw_dict, &mp_type_dict)) {
        // dictionary
        mp_map_t *map = mp_obj_dict_get_map(kw_dict);
        assert(args2_len + 2 * map->used <= args2_alloc); // should have enough, since kw_dict_len is in this case hinted correctly above
        for (mp_uint_t i = 0; i < map->alloc; i++) {
            if (MP_MAP_SLOT_IS_FILLED(map, i)) {
                // the key must be a qstr, so intern it if it's a string
                mp_obj_t key = map->table[i].key;
                if (MP_OBJ_IS_TYPE(key, &mp_type_str)) {
                    key = mp_obj_str_intern(key);
                }
                args2[args2_len++] = key;
                args2[args2_len++] = map->table[i].value;
            }
        }
    } else {
        // generic mapping:
        // - call keys() to get an iterable of all keys in the mapping
        // - call __getitem__ for each key to get the corresponding value

        // get the keys iterable
        mp_obj_t dest[3];
        mp_load_method(kw_dict, MP_QSTR_keys, dest);
        mp_obj_t iterable = mp_getiter(mp_call_method_n_kw(0, 0, dest));

        mp_obj_t key;
        while ((key = mp_iternext(iterable)) != MP_OBJ_STOP_ITERATION) {
            // expand size of args array if needed
            if (args2_len + 1 >= args2_alloc) {
                uint new_alloc = args2_alloc * 2;
                if (new_alloc < 4) {
                    new_alloc = 4;
                }
                args2 = m_renew(mp_obj_t, args2, args2_alloc, new_alloc);
                args2_alloc = new_alloc;
            }

            // the key must be a qstr, so intern it if it's a string
            if (MP_OBJ_IS_TYPE(key, &mp_type_str)) {
                key = mp_obj_str_intern(key);
            }

            // get the value corresponding to the key
            mp_load_method(kw_dict, MP_QSTR___getitem__, dest);
            dest[2] = key;
            mp_obj_t value = mp_call_method_n_kw(1, 0, dest);

            // store the key/value pair in the argument array
            args2[args2_len++] = key;
            args2[args2_len++] = value;
        }
    }

    out_args->fun = fun;
    out_args->args = args2;
    out_args->n_args = pos_args_len;
    out_args->n_kw = (args2_len - pos_args_len) / 2;
    out_args->n_alloc = args2_alloc;
}

mp_obj_t mp_call_method_n_kw_var(bool have_self, mp_uint_t n_args_n_kw, const mp_obj_t *args) {
    mp_call_args_t out_args;
    mp_call_prepare_args_n_kw_var(have_self, n_args_n_kw, args, &out_args);

    mp_obj_t res = mp_call_function_n_kw(out_args.fun, out_args.n_args, out_args.n_kw, out_args.args);
    m_del(mp_obj_t, out_args.args, out_args.n_alloc);

    return res;
}

// unpacked items are stored in reverse order into the array pointed to by items
void mp_unpack_sequence(mp_obj_t seq_in, mp_uint_t num, mp_obj_t *items) {
    mp_uint_t seq_len;
    if (MP_OBJ_IS_TYPE(seq_in, &mp_type_tuple) || MP_OBJ_IS_TYPE(seq_in, &mp_type_list)) {
        mp_obj_t *seq_items;
        if (MP_OBJ_IS_TYPE(seq_in, &mp_type_tuple)) {
            mp_obj_tuple_get(seq_in, &seq_len, &seq_items);
        } else {
            mp_obj_list_get(seq_in, &seq_len, &seq_items);
        }
        if (seq_len < num) {
            goto too_short;
        } else if (seq_len > num) {
            goto too_long;
        }
        for (mp_uint_t i = 0; i < num; i++) {
            items[i] = seq_items[num - 1 - i];
        }
    } else {
        mp_obj_t iterable = mp_getiter(seq_in);

        for (seq_len = 0; seq_len < num; seq_len++) {
            mp_obj_t el = mp_iternext(iterable);
            if (el == MP_OBJ_STOP_ITERATION) {
                goto too_short;
            }
            items[num - 1 - seq_len] = el;
        }
        if (mp_iternext(iterable) != MP_OBJ_STOP_ITERATION) {
            goto too_long;
        }
    }
    return;

too_short:
    if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) {
        mp_raise_ValueError("wrong number of values to unpack");
    } else {
        mp_raise_ValueError_varg("need more than %d values to unpack",
            (int)seq_len);
    }
too_long:
    if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) {
        mp_raise_ValueError("wrong number of values to unpack");
    } else {
        mp_raise_ValueError_varg("too many values to unpack (expected %d)",
            (int)num);
    }
}

// unpacked items are stored in reverse order into the array pointed to by items
void mp_unpack_ex(mp_obj_t seq_in, mp_uint_t num_in, mp_obj_t *items) {
    mp_uint_t num_left = num_in & 0xff;
    mp_uint_t num_right = (num_in >> 8) & 0xff;
    DEBUG_OP_printf("unpack ex " UINT_FMT " " UINT_FMT "\n", num_left, num_right);
    mp_uint_t seq_len;
    if (MP_OBJ_IS_TYPE(seq_in, &mp_type_tuple) || MP_OBJ_IS_TYPE(seq_in, &mp_type_list)) {
        mp_obj_t *seq_items;
        if (MP_OBJ_IS_TYPE(seq_in, &mp_type_tuple)) {
            mp_obj_tuple_get(seq_in, &seq_len, &seq_items);
        } else {
            if (num_left == 0 && num_right == 0) {
                // *a, = b # sets a to b if b is a list
                items[0] = seq_in;
                return;
            }
            mp_obj_list_get(seq_in, &seq_len, &seq_items);
        }
        if (seq_len < num_left + num_right) {
            goto too_short;
        }
        for (mp_uint_t i = 0; i < num_right; i++) {
            items[i] = seq_items[seq_len - 1 - i];
        }
        items[num_right] = mp_obj_new_list(seq_len - num_left - num_right, seq_items + num_left);
        for (mp_uint_t i = 0; i < num_left; i++) {
            items[num_right + 1 + i] = seq_items[num_left - 1 - i];
        }
    } else {
        // Generic iterable; this gets a bit messy: we unpack known left length to the
        // items destination array, then the rest to a dynamically created list.  Once the
        // iterable is exhausted, we take from this list for the right part of the items.
        // TODO Improve to waste less memory in the dynamically created list.
        mp_obj_t iterable = mp_getiter(seq_in);
        mp_obj_t item;
        for (seq_len = 0; seq_len < num_left; seq_len++) {
            item = mp_iternext(iterable);
            if (item == MP_OBJ_STOP_ITERATION) {
                goto too_short;
            }
            items[num_left + num_right + 1 - 1 - seq_len] = item;
        }
        mp_obj_list_t *rest = MP_OBJ_TO_PTR(mp_obj_new_list(0, NULL));
        while ((item = mp_iternext(iterable)) != MP_OBJ_STOP_ITERATION) {
            mp_obj_list_append(MP_OBJ_FROM_PTR(rest), item);
        }
        if (rest->len < num_right) {
            goto too_short;
        }
        items[num_right] = MP_OBJ_FROM_PTR(rest);
        for (mp_uint_t i = 0; i < num_right; i++) {
            items[num_right - 1 - i] = rest->items[rest->len - num_right + i];
        }
        mp_obj_list_set_len(MP_OBJ_FROM_PTR(rest), rest->len - num_right);
    }
    return;

too_short:
    if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) {
        mp_raise_ValueError("wrong number of values to unpack");
    } else {
        mp_raise_ValueError_varg("need more than %d values to unpack",
            (int)seq_len);
    }
}

mp_obj_t mp_load_attr(mp_obj_t base, qstr attr) {
    DEBUG_OP_printf("load attr %p.%s\n", base, qstr_str(attr));
    // use load_method
    mp_obj_t dest[2];
    mp_load_method(base, attr, dest);
    if (dest[1] == MP_OBJ_NULL) {
        // load_method returned just a normal attribute
        return dest[0];
    } else {
        // load_method returned a method, so build a bound method object
        return mp_obj_new_bound_meth(dest[0], dest[1]);
    }
}

#if MICROPY_BUILTIN_METHOD_CHECK_SELF_ARG

// The following "checked fun" type is local to the mp_convert_member_lookup
// function, and serves to check that the first argument to a builtin function
// has the correct type.

typedef struct _mp_obj_checked_fun_t {
    mp_obj_base_t base;
    const mp_obj_type_t *type;
    mp_obj_t fun;
} mp_obj_checked_fun_t;

STATIC mp_obj_t checked_fun_call(mp_obj_t self_in, size_t n_args, size_t n_kw, const mp_obj_t *args) {
    mp_obj_checked_fun_t *self = MP_OBJ_TO_PTR(self_in);
    if (n_args > 0) {
        const mp_obj_type_t *arg0_type = mp_obj_get_type(args[0]);
        if (arg0_type != self->type) {
            if (MICROPY_ERROR_REPORTING != MICROPY_ERROR_REPORTING_DETAILED) {
                mp_raise_TypeError("argument has wrong type");
            } else {
                mp_raise_TypeError_varg("argument should be a '%q' not a '%q'",
                    self->type->name, arg0_type->name);
            }
        }
    }
    return mp_call_function_n_kw(self->fun, n_args, n_kw, args);
}

STATIC const mp_obj_type_t mp_type_checked_fun = {
    { &mp_type_type },
    .name = MP_QSTR_function,
    .call = checked_fun_call,
};

STATIC mp_obj_t mp_obj_new_checked_fun(const mp_obj_type_t *type, mp_obj_t fun) {
    mp_obj_checked_fun_t *o = m_new_obj(mp_obj_checked_fun_t);
    o->base.type = &mp_type_checked_fun;
    o->type = type;
    o->fun = fun;
    return MP_OBJ_FROM_PTR(o);
}

#endif // MICROPY_BUILTIN_METHOD_CHECK_SELF_ARG

// Given a member that was extracted from an instance, convert it correctly
// and put the result in the dest[] array for a possible method call.
// Conversion means dealing with static/class methods, callables, and values.
// see http://docs.python.org/3/howto/descriptor.html
void mp_convert_member_lookup(mp_obj_t self, const mp_obj_type_t *type, mp_obj_t member, mp_obj_t *dest) {
    if (MP_OBJ_IS_TYPE(member, &mp_type_staticmethod)) {
        // return just the function
        dest[0] = ((mp_obj_static_class_method_t*)MP_OBJ_TO_PTR(member))->fun;
    } else if (MP_OBJ_IS_TYPE(member, &mp_type_classmethod)) {
        // return a bound method, with self being the type of this object
        // this type should be the type of the original instance, not the base
        // type (which is what is passed in the 'type' argument to this function)
        if (self != MP_OBJ_NULL) {
            type = mp_obj_get_type(self);
        }
        dest[0] = ((mp_obj_static_class_method_t*)MP_OBJ_TO_PTR(member))->fun;
        dest[1] = MP_OBJ_FROM_PTR(type);
    } else if (MP_OBJ_IS_TYPE(member, &mp_type_type)) {
        // Don't try to bind types (even though they're callable)
        dest[0] = member;
    } else if (MP_OBJ_IS_FUN(member)
        || (MP_OBJ_IS_OBJ(member)
            && (((mp_obj_base_t*)MP_OBJ_TO_PTR(member))->type->name == MP_QSTR_closure
                || ((mp_obj_base_t*)MP_OBJ_TO_PTR(member))->type->name == MP_QSTR_generator))) {
        // only functions, closures and generators objects can be bound to self
        #if MICROPY_BUILTIN_METHOD_CHECK_SELF_ARG
        const mp_obj_type_t *m_type = ((mp_obj_base_t*)MP_OBJ_TO_PTR(member))->type;
        if (self == MP_OBJ_NULL
            && (m_type == &mp_type_fun_builtin_0
                || m_type == &mp_type_fun_builtin_1
                || m_type == &mp_type_fun_builtin_2
                || m_type == &mp_type_fun_builtin_3
                || m_type == &mp_type_fun_builtin_var)) {
            // we extracted a builtin method without a first argument, so we must
            // wrap this function in a type checker
            dest[0] = mp_obj_new_checked_fun(type, member);
        } else
        #endif
        {
            // return a bound method, with self being this object
            dest[0] = member;
            dest[1] = self;
        }
    #if MICROPY_PY_BUILTINS_PROPERTY
    } else if (MP_OBJ_IS_TYPE(member, &mp_type_property) && mp_obj_is_native_type(type)) {
        // object member is a property; delegate the load to the property
        // Note: This is an optimisation for code size and execution time.
        // The proper way to do it is have the functionality just below
        // in a __get__ method of the property object, and then it would
        // be called by the descriptor code down below.  But that way
        // requires overhead for the nested mp_call's and overhead for
        // the code.
        const mp_obj_t *proxy = mp_obj_property_get(member);
        if (proxy[0] == mp_const_none) {
            mp_raise_AttributeError("unreadable attribute");
        } else {
            dest[0] = mp_call_function_n_kw(proxy[0], 1, 0, &self);
        }
    #endif
    } else {
        // class member is a value, so just return that value
        dest[0] = member;
    }
}

// no attribute found, returns:     dest[0] == MP_OBJ_NULL, dest[1] == MP_OBJ_NULL
// normal attribute found, returns: dest[0] == <attribute>, dest[1] == MP_OBJ_NULL
// method attribute found, returns: dest[0] == <method>,    dest[1] == <self>
void mp_load_method_maybe(mp_obj_t obj, qstr attr, mp_obj_t *dest) {
    // clear output to indicate no attribute/method found yet
    dest[0] = MP_OBJ_NULL;
    dest[1] = MP_OBJ_NULL;

    // get the type
    mp_obj_type_t *type = mp_obj_get_type(obj);

    // look for built-in names
    if (0) {
#if MICROPY_CPYTHON_COMPAT
    } else if (attr == MP_QSTR___class__) {
        // a.__class__ is equivalent to type(a)
        dest[0] = MP_OBJ_FROM_PTR(type);
#endif

    } else if (attr == MP_QSTR___next__ && type->iternext != NULL) {
        dest[0] = MP_OBJ_FROM_PTR(&mp_builtin_next_obj);
        dest[1] = obj;

    } else if (type->attr != NULL) {
        // this type can do its own load, so call it
        type->attr(obj, attr, dest);

    } else if (type->locals_dict != NULL) {
        // generic method lookup
        // this is a lookup in the object (ie not class or type)
        assert(type->locals_dict->base.type == &mp_type_dict); // Micro Python restriction, for now
        mp_map_t *locals_map = &type->locals_dict->map;
        mp_map_elem_t *elem = mp_map_lookup(locals_map, MP_OBJ_NEW_QSTR(attr), MP_MAP_LOOKUP);
        if (elem != NULL) {
            mp_convert_member_lookup(obj, type, elem->value, dest);
        }
    }
}

void mp_load_method(mp_obj_t base, qstr attr, mp_obj_t *dest) {
    DEBUG_OP_printf("load method %p.%s\n", base, qstr_str(attr));

    mp_load_method_maybe(base, attr, dest);

    if (dest[0] == MP_OBJ_NULL) {
        // no attribute/method called attr
        if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) {
            mp_raise_AttributeError("no such attribute");
        } else {
            // following CPython, we give a more detailed error message for type objects
            if (MP_OBJ_IS_TYPE(base, &mp_type_type)) {
                nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_AttributeError,
                    "type object '%q' has no attribute '%q'",
                    ((mp_obj_type_t*)MP_OBJ_TO_PTR(base))->name, attr));
            } else {
                nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_AttributeError,
                    "'%s' object has no attribute '%q'",
                    mp_obj_get_type_str(base), attr));
            }
        }
    }
}

void mp_store_attr(mp_obj_t base, qstr attr, mp_obj_t value) {
    DEBUG_OP_printf("store attr %p.%s <- %p\n", base, qstr_str(attr), value);
    mp_obj_type_t *type = mp_obj_get_type(base);
    if (type->attr != NULL) {
        mp_obj_t dest[2] = {MP_OBJ_SENTINEL, value};
        type->attr(base, attr, dest);
        if (dest[0] == MP_OBJ_NULL) {
            // success
            return;
        }
    #if MICROPY_PY_BUILTINS_PROPERTY
    } else if (type->locals_dict != NULL) {
        // generic method lookup
        // this is a lookup in the object (ie not class or type)
        assert(type->locals_dict->base.type == &mp_type_dict); // Micro Python restriction, for now
        mp_map_t *locals_map = &type->locals_dict->map;
        mp_map_elem_t *elem = mp_map_lookup(locals_map, MP_OBJ_NEW_QSTR(attr), MP_MAP_LOOKUP);
        if (elem != NULL && MP_OBJ_IS_TYPE(elem->value, &mp_type_property)) {
            // attribute exists and is a property; delegate the store/delete
            // Note: This is an optimisation for code size and execution time.
            // The proper way to do it is have the functionality just below in
            // a __set__/__delete__ method of the property object, and then it
            // would be called by the descriptor code down below.  But that way
            // requires overhead for the nested mp_call's and overhead for
            // the code.
            const mp_obj_t *proxy = mp_obj_property_get(elem->value);
            mp_obj_t dest[2] = {base, value};
            if (value == MP_OBJ_NULL) {
                // delete attribute
                if (proxy[2] != mp_const_none) {
                    mp_call_function_n_kw(proxy[2], 1, 0, dest);
                    return;
                }
            } else if (proxy[1] != mp_const_none) {
                mp_call_function_n_kw(proxy[1], 2, 0, dest);
                return;
            }
        }
    #endif
    }
    if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) {
        mp_raise_AttributeError("no such attribute");
    } else {
        nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_AttributeError,
            "'%s' object has no attribute '%q'",
            mp_obj_get_type_str(base), attr));
    }
}

mp_obj_t mp_getiter(mp_obj_t o_in) {
    assert(o_in);

    // check for native getiter (corresponds to __iter__)
    mp_obj_type_t *type = mp_obj_get_type(o_in);
    if (type->getiter != NULL) {
        mp_obj_t iter = type->getiter(o_in);
        if (iter != MP_OBJ_NULL) {
            return iter;
        }
    }

    // check for __getitem__
    mp_obj_t dest[2];
    mp_load_method_maybe(o_in, MP_QSTR___getitem__, dest);
    if (dest[0] != MP_OBJ_NULL) {
        // __getitem__ exists, create and return an iterator
        return mp_obj_new_getitem_iter(dest);
    }

    // object not iterable
    if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) {
        mp_raise_TypeError("object not iterable");
    } else {
        mp_raise_TypeError_varg(
            "'%s' object is not iterable", mp_obj_get_type_str(o_in));
    }
}

// may return MP_OBJ_STOP_ITERATION as an optimisation instead of raise StopIteration()
// may also raise StopIteration()
mp_obj_t mp_iternext_allow_raise(mp_obj_t o_in) {
    mp_obj_type_t *type = mp_obj_get_type(o_in);
    if (type->iternext != NULL) {
        return type->iternext(o_in);
    } else {
        // check for __next__ method
        mp_obj_t dest[2];
        mp_load_method_maybe(o_in, MP_QSTR___next__, dest);
        if (dest[0] != MP_OBJ_NULL) {
            // __next__ exists, call it and return its result
            return mp_call_method_n_kw(0, 0, dest);
        } else {
            if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) {
                mp_raise_TypeError("object not an iterator");
            } else {
                mp_raise_TypeError_varg("'%s' object is not an iterator",
                    mp_obj_get_type_str(o_in));
            }
        }
    }
}

// will always return MP_OBJ_STOP_ITERATION instead of raising StopIteration() (or any subclass thereof)
// may raise other exceptions
mp_obj_t mp_iternext(mp_obj_t o_in) {
    MP_STACK_CHECK(); // enumerate, filter, map and zip can recursively call mp_iternext
    mp_obj_type_t *type = mp_obj_get_type(o_in);
    if (type->iternext != NULL) {
        return type->iternext(o_in);
    } else {
        // check for __next__ method
        mp_obj_t dest[2];
        mp_load_method_maybe(o_in, MP_QSTR___next__, dest);
        if (dest[0] != MP_OBJ_NULL) {
            // __next__ exists, call it and return its result
            nlr_buf_t nlr;
            if (nlr_push(&nlr) == 0) {
                mp_obj_t ret = mp_call_method_n_kw(0, 0, dest);
                nlr_pop();
                return ret;
            } else {
                if (mp_obj_is_subclass_fast(MP_OBJ_FROM_PTR(((mp_obj_base_t*)nlr.ret_val)->type), MP_OBJ_FROM_PTR(&mp_type_StopIteration))) {
                    return MP_OBJ_STOP_ITERATION;
                } else {
                    nlr_jump(nlr.ret_val);
                }
            }
        } else {
            if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) {
                mp_raise_TypeError("object not an iterator");
            } else {
                mp_raise_TypeError_varg("'%s' object is not an iterator",
                    mp_obj_get_type_str(o_in));
            }
        }
    }
}

// TODO: Unclear what to do with StopIterarion exception here.
mp_vm_return_kind_t mp_resume(mp_obj_t self_in, mp_obj_t send_value, mp_obj_t throw_value, mp_obj_t *ret_val) {
    assert((send_value != MP_OBJ_NULL) ^ (throw_value != MP_OBJ_NULL));
    mp_obj_type_t *type = mp_obj_get_type(self_in);

    if (type == &mp_type_gen_instance) {
        return mp_obj_gen_resume(self_in, send_value, throw_value, ret_val);
    }

    if (type->iternext != NULL && send_value == mp_const_none) {
        mp_obj_t ret = type->iternext(self_in);
        if (ret != MP_OBJ_STOP_ITERATION) {
            *ret_val = ret;
            return MP_VM_RETURN_YIELD;
        } else {
            // Emulate raise StopIteration()
            // Special case, handled in vm.c
            *ret_val = MP_OBJ_NULL;
            return MP_VM_RETURN_NORMAL;
        }
    }

    mp_obj_t dest[3]; // Reserve slot for send() arg

    // Python instance iterator protocol
    if (send_value == mp_const_none) {
        mp_load_method_maybe(self_in, MP_QSTR___next__, dest);
        if (dest[0] != MP_OBJ_NULL) {
            nlr_buf_t nlr;
            if (nlr_push(&nlr) == 0) {
                *ret_val = mp_call_method_n_kw(0, 0, dest);
                nlr_pop();
                return MP_VM_RETURN_YIELD;
            } else {
                *ret_val = MP_OBJ_FROM_PTR(nlr.ret_val);
                return MP_VM_RETURN_EXCEPTION;
            }
        }
    }

    // Either python instance generator protocol, or native object
    // generator protocol.
    if (send_value != MP_OBJ_NULL) {
        mp_load_method(self_in, MP_QSTR_send, dest);
        dest[2] = send_value;
        // TODO: This should have exception wrapping like __next__ case
        // above. Not done right away to think how to optimize native
        // generators better, see:
        // https://github.com/micropython/micropython/issues/2628
        *ret_val = mp_call_method_n_kw(1, 0, dest);
        return MP_VM_RETURN_YIELD;
    }

    if (throw_value != MP_OBJ_NULL) {
        if (mp_obj_is_subclass_fast(MP_OBJ_FROM_PTR(mp_obj_get_type(throw_value)), MP_OBJ_FROM_PTR(&mp_type_GeneratorExit))) {
            mp_load_method_maybe(self_in, MP_QSTR_close, dest);
            if (dest[0] != MP_OBJ_NULL) {
                // TODO: Exceptions raised in close() are not propagated,
                // printed to sys.stderr
                *ret_val = mp_call_method_n_kw(0, 0, dest);
                // We assume one can't "yield" from close()
                return MP_VM_RETURN_NORMAL;
            }
        }
        mp_load_method_maybe(self_in, MP_QSTR_throw, dest);
        if (dest[0] != MP_OBJ_NULL) {
            *ret_val = mp_call_method_n_kw(1, 0, &throw_value);
            // If .throw() method returned, we assume it's value to yield
            // - any exception would be thrown with nlr_raise().
            return MP_VM_RETURN_YIELD;
        }
        // If there's nowhere to throw exception into, then we assume that object
        // is just incapable to handle it, so any exception thrown into it
        // will be propagated up. This behavior is approved by test_pep380.py
        // test_delegation_of_close_to_non_generator(),
        //  test_delegating_throw_to_non_generator()
        *ret_val = throw_value;
        return MP_VM_RETURN_EXCEPTION;
    }

    assert(0);
    return MP_VM_RETURN_NORMAL; // Should be unreachable
}

mp_obj_t mp_make_raise_obj(mp_obj_t o) {
    DEBUG_printf("raise %p\n", o);
    if (mp_obj_is_exception_type(o)) {
        // o is an exception type (it is derived from BaseException (or is BaseException))
        // create and return a new exception instance by calling o
        // TODO could have an option to disable traceback, then builtin exceptions (eg TypeError)
        // could have const instances in ROM which we return here instead
        return mp_call_function_n_kw(o, 0, 0, NULL);
    } else if (mp_obj_is_exception_instance(o)) {
        // o is an instance of an exception, so use it as the exception
        return o;
    } else {
        // o cannot be used as an exception, so return a type error (which will be raised by the caller)
        return mp_obj_new_exception_msg(&mp_type_TypeError, "exceptions must derive from BaseException");
    }
}

mp_obj_t mp_import_name(qstr name, mp_obj_t fromlist, mp_obj_t level) {
    DEBUG_printf("import name '%s' level=%d\n", qstr_str(name), MP_OBJ_SMALL_INT_VALUE(level));

    // build args array
    mp_obj_t args[5];
    args[0] = MP_OBJ_NEW_QSTR(name);
    args[1] = mp_const_none; // TODO should be globals
    args[2] = mp_const_none; // TODO should be locals
    args[3] = fromlist;
    args[4] = level; // must be 0; we don't yet support other values

    // TODO lookup __import__ and call that instead of going straight to builtin implementation
    return mp_builtin___import__(5, args);
}

mp_obj_t mp_import_from(mp_obj_t module, qstr name) {
    DEBUG_printf("import from %p %s\n", module, qstr_str(name));

    mp_obj_t dest[2];

    mp_load_method_maybe(module, name, dest);

    if (dest[1] != MP_OBJ_NULL) {
        // Hopefully we can't import bound method from an object
import_error:
        mp_raise_msg_varg(&mp_type_ImportError, "cannot import name %q", name);
    }

    if (dest[0] != MP_OBJ_NULL) {
        return dest[0];
    }

    // See if it's a package, then can try FS import
    if (!mp_obj_is_package(module)) {
        goto import_error;
    }

    mp_load_method_maybe(module, MP_QSTR___name__, dest);
    mp_uint_t pkg_name_len;
    const char *pkg_name = mp_obj_str_get_data(dest[0], &pkg_name_len);

    const uint dot_name_len = pkg_name_len + 1 + qstr_len(name);
    char *dot_name = alloca(dot_name_len);
    memcpy(dot_name, pkg_name, pkg_name_len);
    dot_name[pkg_name_len] = '.';
    memcpy(dot_name + pkg_name_len + 1, qstr_str(name), qstr_len(name));
    qstr dot_name_q = qstr_from_strn(dot_name, dot_name_len);

    mp_obj_t args[5];
    args[0] = MP_OBJ_NEW_QSTR(dot_name_q);
    args[1] = mp_const_none; // TODO should be globals
    args[2] = mp_const_none; // TODO should be locals
    args[3] = mp_const_true; // Pass sentinel "non empty" value to force returning of leaf module
    args[4] = MP_OBJ_NEW_SMALL_INT(0);

    // TODO lookup __import__ and call that instead of going straight to builtin implementation
    return mp_builtin___import__(5, args);
}

void mp_import_all(mp_obj_t module) {
    DEBUG_printf("import all %p\n", module);

    // TODO: Support __all__
    mp_map_t *map = mp_obj_dict_get_map(MP_OBJ_FROM_PTR(mp_obj_module_get_globals(module)));
    for (mp_uint_t i = 0; i < map->alloc; i++) {
        if (MP_MAP_SLOT_IS_FILLED(map, i)) {
            qstr name = MP_OBJ_QSTR_VALUE(map->table[i].key);
            if (*qstr_str(name) != '_') {
                mp_store_name(name, map->table[i].value);
            }
        }
    }
}

#if MICROPY_ENABLE_COMPILER

// this is implemented in this file so it can optimise access to locals/globals
mp_obj_t mp_parse_compile_execute(mp_lexer_t *lex, mp_parse_input_kind_t parse_input_kind, mp_obj_dict_t *globals, mp_obj_dict_t *locals) {
    // save context
    mp_obj_dict_t *volatile old_globals = mp_globals_get();
    mp_obj_dict_t *volatile old_locals = mp_locals_get();

    // set new context
    mp_globals_set(globals);
    mp_locals_set(locals);

    nlr_buf_t nlr;
    if (nlr_push(&nlr) == 0) {
        qstr source_name = lex->source_name;
        mp_parse_tree_t parse_tree = mp_parse(lex, parse_input_kind);
        mp_obj_t module_fun = mp_compile(&parse_tree, source_name, MP_EMIT_OPT_NONE, false);

        mp_obj_t ret;
        if (MICROPY_PY_BUILTINS_COMPILE && globals == NULL) {
            // for compile only, return value is the module function
            ret = module_fun;
        } else {
            // execute module function and get return value
            ret = mp_call_function_0(module_fun);
        }

        // finish nlr block, restore context and return value
        nlr_pop();
        mp_globals_set(old_globals);
        mp_locals_set(old_locals);
        return ret;
    } else {
        // exception; restore context and re-raise same exception
        mp_globals_set(old_globals);
        mp_locals_set(old_locals);
        nlr_jump(nlr.ret_val);
    }
}

#endif // MICROPY_ENABLE_COMPILER

void *m_malloc_fail(size_t num_bytes) {
    DEBUG_printf("memory allocation failed, allocating %u bytes\n", (uint)num_bytes);
    if (0) {
        // dummy
    #if MICROPY_ENABLE_GC
    } else if (gc_is_locked()) {
        mp_raise_msg(&mp_type_MemoryError, "memory allocation failed, heap is locked");
    #endif
    } else {
        mp_raise_msg_varg(&mp_type_MemoryError,
            "memory allocation failed, allocating %u bytes", (uint)num_bytes);
    }
}

NORETURN void mp_raise_msg(const mp_obj_type_t *exc_type, const char *msg) {
    nlr_raise(mp_obj_new_exception_msg_varg(exc_type, msg));
}

NORETURN void mp_raise_msg_varg(const mp_obj_type_t *exc_type, const char *fmt, ...) {
    va_list argptr;
    va_start(argptr,fmt);
    mp_obj_t exception = mp_obj_new_exception_msg_vlist(exc_type, fmt, argptr);
    va_end(argptr);
    nlr_raise(exception);
}

NORETURN void mp_raise_AttributeError(const char *msg) {
    mp_raise_msg(&mp_type_AttributeError, msg);
}

NORETURN void mp_raise_RuntimeError(const char *msg) {
    mp_raise_msg(&mp_type_RuntimeError, msg);
}

NORETURN void mp_raise_NotImplementedError(const char *msg) {
    mp_raise_msg(&mp_type_NotImplementedError, msg);
}

NORETURN void mp_raise_ImportError(const char *msg) {
    mp_raise_msg(&mp_type_ImportError, msg);
}

NORETURN void mp_raise_IndexError(const char *msg) {
    mp_raise_msg(&mp_type_IndexError, msg);
}

NORETURN void mp_raise_ValueError(const char *msg) {
    mp_raise_msg(&mp_type_ValueError, msg);
}

NORETURN void mp_raise_ValueError_varg(const char *fmt, ...) {
    va_list argptr;
    va_start(argptr,fmt);
    mp_obj_t exception = mp_obj_new_exception_msg_vlist(&mp_type_ValueError, fmt, argptr);
    va_end(argptr);
    nlr_raise(exception);
}

NORETURN void mp_raise_TypeError(const char *msg) {
    mp_raise_msg(&mp_type_TypeError, msg);
}

NORETURN void mp_raise_TypeError_varg(const char *fmt, ...) {
    va_list argptr;
    va_start(argptr,fmt);
    mp_obj_t exception = mp_obj_new_exception_msg_vlist(&mp_type_TypeError, fmt, argptr);
    va_end(argptr);
    nlr_raise(exception);
}

NORETURN void mp_raise_OSError(int errno_) {
    nlr_raise(mp_obj_new_exception_arg1(&mp_type_OSError, MP_OBJ_NEW_SMALL_INT(errno_)));
}