CircuitPython

Source code browser

Note: This site will be taken down by the end of the year

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
/*
 * This file is part of the Micro Python project, http://micropython.org/
 *
 * The MIT License (MIT)
 *
 * Copyright (c) 2013, 2014 Damien P. George
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

#include <stdio.h>
#include <string.h>

#include "py/nlr.h"
#include "py/runtime.h"
#include "py/mphal.h"
#include "irq.h"
#include "pin.h"
#include "genhdr/pins.h"
#include "bufhelper.h"
#include "dma.h"
#include "i2c.h"

#if !defined(MICROPY_HW_I2C_BAUDRATE_DEFAULT)
#define MICROPY_HW_I2C_BAUDRATE_DEFAULT 400000
#endif

#if !defined(MICROPY_HW_I2C_BAUDRATE_MAX)
#define MICROPY_HW_I2C_BAUDRATE_MAX 400000
#endif

#if !defined(I2C_NOSTRETCH_DISABLE)
// Assumes that the F7 firmware is newer, so the F4 firmware will eventually
// catchup. I2C_NOSTRETCH_DISABLED was renamed to I2C_NOSTRETCH_DISABLE
// in the F7 so we use the F7 constant and provide a backwards compatabilty
// #define here.
#define I2C_NOSTRETCH_DISABLE I2C_NOSTRETCH_DISABLED
#endif

/// \moduleref pyb
/// \class I2C - a two-wire serial protocol
///
/// I2C is a two-wire protocol for communicating between devices.  At the physical
/// level it consists of 2 wires: SCL and SDA, the clock and data lines respectively.
///
/// I2C objects are created attached to a specific bus.  They can be initialised
/// when created, or initialised later on:
///
///     from pyb import I2C
///
///     i2c = I2C(1)                         # create on bus 1
///     i2c = I2C(1, I2C.MASTER)             # create and init as a master
///     i2c.init(I2C.MASTER, baudrate=20000) # init as a master
///     i2c.init(I2C.SLAVE, addr=0x42)       # init as a slave with given address
///     i2c.deinit()                         # turn off the peripheral
///
/// Printing the i2c object gives you information about its configuration.
///
/// Basic methods for slave are send and recv:
///
///     i2c.send('abc')      # send 3 bytes
///     i2c.send(0x42)       # send a single byte, given by the number
///     data = i2c.recv(3)   # receive 3 bytes
///
/// To receive inplace, first create a bytearray:
///
///     data = bytearray(3)  # create a buffer
///     i2c.recv(data)       # receive 3 bytes, writing them into data
///
/// You can specify a timeout (in ms):
///
///     i2c.send(b'123', timeout=2000)   # timout after 2 seconds
///
/// A master must specify the recipient's address:
///
///     i2c.init(I2C.MASTER)
///     i2c.send('123', 0x42)        # send 3 bytes to slave with address 0x42
///     i2c.send(b'456', addr=0x42)  # keyword for address
///
/// Master also has other methods:
///
///     i2c.is_ready(0x42)           # check if slave 0x42 is ready
///     i2c.scan()                   # scan for slaves on the bus, returning
///                                  #   a list of valid addresses
///     i2c.mem_read(3, 0x42, 2)     # read 3 bytes from memory of slave 0x42,
///                                  #   starting at address 2 in the slave
///     i2c.mem_write('abc', 0x42, 2, timeout=1000)
#define PYB_I2C_MASTER (0)
#define PYB_I2C_SLAVE  (1)

typedef struct _pyb_i2c_obj_t {
    mp_obj_base_t base;
    I2C_HandleTypeDef *i2c;
    const dma_descr_t *tx_dma_descr;
    const dma_descr_t *rx_dma_descr;
} pyb_i2c_obj_t;

#if defined(MICROPY_HW_I2C1_SCL)
I2C_HandleTypeDef I2CHandle1 = {.Instance = NULL};
#endif
#if defined(MICROPY_HW_I2C2_SCL)
I2C_HandleTypeDef I2CHandle2 = {.Instance = NULL};
#endif
#if defined(MICROPY_HW_I2C3_SCL)
I2C_HandleTypeDef I2CHandle3 = {.Instance = NULL};
#endif

STATIC const pyb_i2c_obj_t pyb_i2c_obj[] = {
    #if defined(MICROPY_HW_I2C1_SCL)
    {{&pyb_i2c_type}, &I2CHandle1, &dma_I2C_1_TX, &dma_I2C_1_RX},
    #else
    {{&pyb_i2c_type}, NULL, NULL, NULL},
    #endif
    #if defined(MICROPY_HW_I2C2_SCL)
    {{&pyb_i2c_type}, &I2CHandle2, &dma_I2C_2_TX, &dma_I2C_2_RX},
    #else
    {{&pyb_i2c_type}, NULL, NULL, NULL},
    #endif
    #if defined(MICROPY_HW_I2C3_SCL)
    {{&pyb_i2c_type}, &I2CHandle3, &dma_I2C_3_TX, &dma_I2C_3_RX},
    #else
    {{&pyb_i2c_type}, NULL, NULL, NULL},
    #endif
};

#if defined(MICROPY_HW_I2C_BAUDRATE_TIMING)
// The STM32F0, F3, F7 and L4 use a TIMINGR register rather than ClockSpeed and
// DutyCycle.

STATIC const struct {
    uint32_t    baudrate;
    uint32_t    timing;
} pyb_i2c_baudrate_timing[] = MICROPY_HW_I2C_BAUDRATE_TIMING;

#define NUM_BAUDRATE_TIMINGS MP_ARRAY_SIZE(pyb_i2c_baudrate_timing)

STATIC void i2c_set_baudrate(I2C_InitTypeDef *init, uint32_t baudrate) {
    for (int i = 0; i < NUM_BAUDRATE_TIMINGS; i++) {
        if (pyb_i2c_baudrate_timing[i].baudrate == baudrate) {
            init->Timing = pyb_i2c_baudrate_timing[i].timing;
            return;
        }
    }
    nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError,
                                            "Unsupported I2C baudrate: %lu", baudrate));
}

STATIC uint32_t i2c_get_baudrate(I2C_InitTypeDef *init) {
    for (int i = 0; i < NUM_BAUDRATE_TIMINGS; i++) {
        if (pyb_i2c_baudrate_timing[i].timing == init->Timing) {
            return pyb_i2c_baudrate_timing[i].baudrate;
        }
    }
    return 0;
}

#else

STATIC void i2c_set_baudrate(I2C_InitTypeDef *init, uint32_t baudrate) {
    init->ClockSpeed = baudrate;
    init->DutyCycle = I2C_DUTYCYCLE_16_9;
}

STATIC uint32_t i2c_get_baudrate(I2C_InitTypeDef *init) {
    return init->ClockSpeed;
}

#endif // MICROPY_HW_I2C_BAUDRATE_TIMING

void i2c_init0(void) {
    // reset the I2C1 handles
    #if defined(MICROPY_HW_I2C1_SCL)
    memset(&I2CHandle1, 0, sizeof(I2C_HandleTypeDef));
    I2CHandle1.Instance = I2C1;
    #endif
    #if defined(MICROPY_HW_I2C2_SCL)
    memset(&I2CHandle2, 0, sizeof(I2C_HandleTypeDef));
    I2CHandle2.Instance = I2C2;
    #endif
    #if defined(MICROPY_HW_I2C3_SCL)
    memset(&I2CHandle3, 0, sizeof(I2C_HandleTypeDef));
    I2CHandle3.Instance = I2C3;
    #endif
}

void i2c_init(I2C_HandleTypeDef *i2c) {
    // init the GPIO lines
    GPIO_InitTypeDef GPIO_InitStructure;
    GPIO_InitStructure.Mode = GPIO_MODE_AF_OD;
    GPIO_InitStructure.Speed = GPIO_SPEED_FAST;
    GPIO_InitStructure.Pull = GPIO_NOPULL; // have external pull-up resistors on both lines

    int i2c_unit;
    const pin_obj_t *scl_pin;
    const pin_obj_t *sda_pin;

    if (0) {
    #if defined(MICROPY_HW_I2C1_SCL)
    } else if (i2c == &I2CHandle1) {
        i2c_unit = 1;
        scl_pin = &MICROPY_HW_I2C1_SCL;
        sda_pin = &MICROPY_HW_I2C1_SDA;
        __I2C1_CLK_ENABLE();
    #endif
    #if defined(MICROPY_HW_I2C2_SCL)
    } else if (i2c == &I2CHandle2) {
        i2c_unit = 2;
        scl_pin = &MICROPY_HW_I2C2_SCL;
        sda_pin = &MICROPY_HW_I2C2_SDA;
        __I2C2_CLK_ENABLE();
    #endif
    #if defined(MICROPY_HW_I2C3_SCL)
    } else if (i2c == &I2CHandle3) {
        i2c_unit = 3;
        scl_pin = &MICROPY_HW_I2C3_SCL;
        sda_pin = &MICROPY_HW_I2C3_SDA;
        __I2C3_CLK_ENABLE();
    #endif
    } else {
        // I2C does not exist for this board (shouldn't get here, should be checked by caller)
        return;
    }

    // init the GPIO lines
    mp_hal_pin_set_af(scl_pin, &GPIO_InitStructure, AF_FN_I2C, i2c_unit);
    mp_hal_pin_set_af(sda_pin, &GPIO_InitStructure, AF_FN_I2C, i2c_unit);

    // init the I2C device
    if (HAL_I2C_Init(i2c) != HAL_OK) {
        // init error
        // TODO should raise an exception, but this function is not necessarily going to be
        // called via Python, so may not be properly wrapped in an NLR handler
        printf("OSError: HAL_I2C_Init failed\n");
        return;
    }

    // invalidate the DMA channels so they are initialised on first use
    const pyb_i2c_obj_t *self = &pyb_i2c_obj[i2c_unit - 1];
    dma_invalidate_channel(self->tx_dma_descr);
    dma_invalidate_channel(self->rx_dma_descr);
}

void i2c_deinit(I2C_HandleTypeDef *i2c) {
    HAL_I2C_DeInit(i2c);
    if (0) {
    #if defined(MICROPY_HW_I2C1_SCL)
    } else if (i2c->Instance == I2C1) {
        __I2C1_FORCE_RESET();
        __I2C1_RELEASE_RESET();
        __I2C1_CLK_DISABLE();
    #endif
    #if defined(MICROPY_HW_I2C2_SCL)
    } else if (i2c->Instance == I2C2) {
        __I2C2_FORCE_RESET();
        __I2C2_RELEASE_RESET();
        __I2C2_CLK_DISABLE();
    #endif
    #if defined(MICROPY_HW_I2C3_SCL)
    } else if (i2c->Instance == I2C3) {
        __I2C3_FORCE_RESET();
        __I2C3_RELEASE_RESET();
        __I2C3_CLK_DISABLE();
    #endif
    }
}

STATIC HAL_StatusTypeDef i2c_wait_dma_finished(I2C_HandleTypeDef *i2c, uint32_t timeout) {
    // Note: we can't use WFI to idle in this loop because the DMA completion
    // interrupt may occur before the WFI.  Hence we miss it and have to wait
    // until the next sys-tick (up to 1ms).
    uint32_t start = HAL_GetTick();
    while (HAL_I2C_GetState(i2c) != HAL_I2C_STATE_READY) {
        if (HAL_GetTick() - start >= timeout) {
            return HAL_TIMEOUT;
        }
    }
    return HAL_OK;
}

/******************************************************************************/
/* Micro Python bindings                                                      */

STATIC inline bool in_master_mode(pyb_i2c_obj_t *self) { return self->i2c->Init.OwnAddress1 == PYB_I2C_MASTER_ADDRESS; }

STATIC void pyb_i2c_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
    pyb_i2c_obj_t *self = self_in;

    uint i2c_num = 0;
    if (0) { }
    #if defined(MICROPY_HW_I2C1_SCL)
    else if (self->i2c->Instance == I2C1) { i2c_num = 1; }
    #endif
    #if defined(MICROPY_HW_I2C2_SCL)
    else if (self->i2c->Instance == I2C2) { i2c_num = 2; }
    #endif
    #if defined(MICROPY_HW_I2C3_SCL)
    else if (self->i2c->Instance == I2C3) { i2c_num = 3; }
    #endif

    if (self->i2c->State == HAL_I2C_STATE_RESET) {
        mp_printf(print, "I2C(%u)", i2c_num);
    } else {
        if (in_master_mode(self)) {
            mp_printf(print, "I2C(%u, I2C.MASTER, baudrate=%u)", i2c_num, i2c_get_baudrate(&self->i2c->Init));
        } else {
            mp_printf(print, "I2C(%u, I2C.SLAVE, addr=0x%02x)", i2c_num, (self->i2c->Instance->OAR1 >> 1) & 0x7f);
        }
    }
}

/// \method init(mode, *, addr=0x12, baudrate=400000, gencall=False)
///
/// Initialise the I2C bus with the given parameters:
///
///   - `mode` must be either `I2C.MASTER` or `I2C.SLAVE`
///   - `addr` is the 7-bit address (only sensible for a slave)
///   - `baudrate` is the SCL clock rate (only sensible for a master)
///   - `gencall` is whether to support general call mode
STATIC mp_obj_t pyb_i2c_init_helper(const pyb_i2c_obj_t *self, mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
    static const mp_arg_t allowed_args[] = {
        { MP_QSTR_mode,     MP_ARG_INT, {.u_int = PYB_I2C_MASTER} },
        { MP_QSTR_addr,     MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0x12} },
        { MP_QSTR_baudrate, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = MICROPY_HW_I2C_BAUDRATE_DEFAULT} },
        { MP_QSTR_gencall,  MP_ARG_KW_ONLY | MP_ARG_BOOL, {.u_bool = false} },
    };

    // parse args
    mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
    mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);

    // set the I2C configuration values
    I2C_InitTypeDef *init = &self->i2c->Init;

    if (args[0].u_int == PYB_I2C_MASTER) {
        // use a special address to indicate we are a master
        init->OwnAddress1 = PYB_I2C_MASTER_ADDRESS;
    } else {
        init->OwnAddress1 = (args[1].u_int << 1) & 0xfe;
    }

    i2c_set_baudrate(init, MIN(args[2].u_int, MICROPY_HW_I2C_BAUDRATE_MAX));
    init->AddressingMode  = I2C_ADDRESSINGMODE_7BIT;
    init->DualAddressMode = I2C_DUALADDRESS_DISABLED;
    init->GeneralCallMode = args[3].u_bool ? I2C_GENERALCALL_ENABLED : I2C_GENERALCALL_DISABLED;
    init->NoStretchMode   = I2C_NOSTRETCH_DISABLED;
    init->OwnAddress2     = 0; // unused
    init->NoStretchMode   = I2C_NOSTRETCH_DISABLE;

    // init the I2C bus
    i2c_init(self->i2c);

    return mp_const_none;
}

/// \classmethod \constructor(bus, ...)
///
/// Construct an I2C object on the given bus.  `bus` can be 1 or 2.
/// With no additional parameters, the I2C object is created but not
/// initialised (it has the settings from the last initialisation of
/// the bus, if any).  If extra arguments are given, the bus is initialised.
/// See `init` for parameters of initialisation.
///
/// The physical pins of the I2C busses are:
///
///   - `I2C(1)` is on the X position: `(SCL, SDA) = (X9, X10) = (PB6, PB7)`
///   - `I2C(2)` is on the Y position: `(SCL, SDA) = (Y9, Y10) = (PB10, PB11)`
STATIC mp_obj_t pyb_i2c_make_new(const mp_obj_type_t *type, mp_uint_t n_args, mp_uint_t n_kw, const mp_obj_t *args) {
    // check arguments
    mp_arg_check_num(n_args, n_kw, 1, MP_OBJ_FUN_ARGS_MAX, true);

    // work out i2c bus
    int i2c_id = 0;
    if (MP_OBJ_IS_STR(args[0])) {
        const char *port = mp_obj_str_get_str(args[0]);
        if (0) {
        #ifdef MICROPY_HW_I2C1_NAME
        } else if (strcmp(port, MICROPY_HW_I2C1_NAME) == 0) {
            i2c_id = 1;
        #endif
        #ifdef MICROPY_HW_I2C2_NAME
        } else if (strcmp(port, MICROPY_HW_I2C2_NAME) == 0) {
            i2c_id = 2;
        #endif
        #ifdef MICROPY_HW_I2C3_NAME
        } else if (strcmp(port, MICROPY_HW_I2C3_NAME) == 0) {
            i2c_id = 3;
        #endif
        } else {
            nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError,
                "I2C(%s) does not exist", port));
        }
    } else {
        i2c_id = mp_obj_get_int(args[0]);
        if (i2c_id < 1 || i2c_id > MP_ARRAY_SIZE(pyb_i2c_obj)
            || pyb_i2c_obj[i2c_id - 1].i2c == NULL) {
            nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError,
                "I2C(%d) does not exist", i2c_id));
        }
    }

    // get I2C object
    const pyb_i2c_obj_t *i2c_obj = &pyb_i2c_obj[i2c_id - 1];

    if (n_args > 1 || n_kw > 0) {
        // start the peripheral
        mp_map_t kw_args;
        mp_map_init_fixed_table(&kw_args, n_kw, args + n_args);
        pyb_i2c_init_helper(i2c_obj, n_args - 1, args + 1, &kw_args);
    }

    return (mp_obj_t)i2c_obj;
}

STATIC mp_obj_t pyb_i2c_init(mp_uint_t n_args, const mp_obj_t *args, mp_map_t *kw_args) {
    return pyb_i2c_init_helper(args[0], n_args - 1, args + 1, kw_args);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_i2c_init_obj, 1, pyb_i2c_init);

/// \method deinit()
/// Turn off the I2C bus.
STATIC mp_obj_t pyb_i2c_deinit(mp_obj_t self_in) {
    pyb_i2c_obj_t *self = self_in;
    i2c_deinit(self->i2c);
    return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_i2c_deinit_obj, pyb_i2c_deinit);

/// \method is_ready(addr)
/// Check if an I2C device responds to the given address.  Only valid when in master mode.
STATIC mp_obj_t pyb_i2c_is_ready(mp_obj_t self_in, mp_obj_t i2c_addr_o) {
    pyb_i2c_obj_t *self = self_in;

    if (!in_master_mode(self)) {
        nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError, "I2C must be a master"));
    }

    mp_uint_t i2c_addr = mp_obj_get_int(i2c_addr_o) << 1;

    for (int i = 0; i < 10; i++) {
        HAL_StatusTypeDef status = HAL_I2C_IsDeviceReady(self->i2c, i2c_addr, 10, 200);
        if (status == HAL_OK) {
            return mp_const_true;
        }
    }

    return mp_const_false;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_i2c_is_ready_obj, pyb_i2c_is_ready);

/// \method scan()
/// Scan all I2C addresses from 0x08 to 0x77 and return a list of those that respond.
/// Only valid when in master mode.
STATIC mp_obj_t pyb_i2c_scan(mp_obj_t self_in) {
    pyb_i2c_obj_t *self = self_in;

    if (!in_master_mode(self)) {
        nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError, "I2C must be a master"));
    }

    mp_obj_t list = mp_obj_new_list(0, NULL);

    for (uint addr = 0x08; addr <= 0x77; addr++) {
        for (int i = 0; i < 10; i++) {
            HAL_StatusTypeDef status = HAL_I2C_IsDeviceReady(self->i2c, addr << 1, 10, 200);
            if (status == HAL_OK) {
                mp_obj_list_append(list, mp_obj_new_int(addr));
                break;
            }
        }
    }

    return list;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_i2c_scan_obj, pyb_i2c_scan);

/// \method send(send, addr=0x00, timeout=5000)
/// Send data on the bus:
///
///   - `send` is the data to send (an integer to send, or a buffer object)
///   - `addr` is the address to send to (only required in master mode)
///   - `timeout` is the timeout in milliseconds to wait for the send
///
/// Return value: `None`.
STATIC mp_obj_t pyb_i2c_send(mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
    static const mp_arg_t allowed_args[] = {
        { MP_QSTR_send,    MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
        { MP_QSTR_addr,    MP_ARG_INT, {.u_int = PYB_I2C_MASTER_ADDRESS} },
        { MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 5000} },
    };

    // parse args
    pyb_i2c_obj_t *self = pos_args[0];
    mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
    mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);

    // get the buffer to send from
    mp_buffer_info_t bufinfo;
    uint8_t data[1];
    pyb_buf_get_for_send(args[0].u_obj, &bufinfo, data);

    // if IRQs are enabled then we can use DMA
    DMA_HandleTypeDef tx_dma;
    if (query_irq() == IRQ_STATE_ENABLED) {
        dma_init(&tx_dma, self->tx_dma_descr, self->i2c);
        self->i2c->hdmatx = &tx_dma;
        self->i2c->hdmarx = NULL;
    }

    // send the data
    HAL_StatusTypeDef status;
    if (in_master_mode(self)) {
        if (args[1].u_int == PYB_I2C_MASTER_ADDRESS) {
            if (query_irq() == IRQ_STATE_ENABLED) {
                dma_deinit(self->tx_dma_descr);
            }
            nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError, "addr argument required"));
        }
        mp_uint_t i2c_addr = args[1].u_int << 1;
        if (query_irq() == IRQ_STATE_DISABLED) {
            status = HAL_I2C_Master_Transmit(self->i2c, i2c_addr, bufinfo.buf, bufinfo.len, args[2].u_int);
        } else {
            status = HAL_I2C_Master_Transmit_DMA(self->i2c, i2c_addr, bufinfo.buf, bufinfo.len);
        }
    } else {
        if (query_irq() == IRQ_STATE_DISABLED) {
            status = HAL_I2C_Slave_Transmit(self->i2c, bufinfo.buf, bufinfo.len, args[2].u_int);
        } else {
            status = HAL_I2C_Slave_Transmit_DMA(self->i2c, bufinfo.buf, bufinfo.len);
        }
    }

    // if we used DMA, wait for it to finish
    if (query_irq() == IRQ_STATE_ENABLED) {
        if (status == HAL_OK) {
            status = i2c_wait_dma_finished(self->i2c, args[2].u_int);
        }
        dma_deinit(self->tx_dma_descr);
    }

    if (status != HAL_OK) {
        mp_hal_raise(status);
    }

    return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_i2c_send_obj, 1, pyb_i2c_send);

/// \method recv(recv, addr=0x00, timeout=5000)
///
/// Receive data on the bus:
///
///   - `recv` can be an integer, which is the number of bytes to receive,
///     or a mutable buffer, which will be filled with received bytes
///   - `addr` is the address to receive from (only required in master mode)
///   - `timeout` is the timeout in milliseconds to wait for the receive
///
/// Return value: if `recv` is an integer then a new buffer of the bytes received,
/// otherwise the same buffer that was passed in to `recv`.
STATIC mp_obj_t pyb_i2c_recv(mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
    static const mp_arg_t allowed_args[] = {
        { MP_QSTR_recv,    MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
        { MP_QSTR_addr,    MP_ARG_INT, {.u_int = PYB_I2C_MASTER_ADDRESS} },
        { MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 5000} },
    };

    // parse args
    pyb_i2c_obj_t *self = pos_args[0];
    mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
    mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);

    // get the buffer to receive into
    vstr_t vstr;
    mp_obj_t o_ret = pyb_buf_get_for_recv(args[0].u_obj, &vstr);

    // if IRQs are enabled then we can use DMA
    DMA_HandleTypeDef rx_dma;
    if (query_irq() == IRQ_STATE_ENABLED) {
        dma_init(&rx_dma, self->rx_dma_descr, self->i2c);
        self->i2c->hdmatx = NULL;
        self->i2c->hdmarx = &rx_dma;
    }

    // receive the data
    HAL_StatusTypeDef status;
    if (in_master_mode(self)) {
        if (args[1].u_int == PYB_I2C_MASTER_ADDRESS) {
            nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError, "addr argument required"));
        }
        mp_uint_t i2c_addr = args[1].u_int << 1;
        if (query_irq() == IRQ_STATE_DISABLED) {
            status = HAL_I2C_Master_Receive(self->i2c, i2c_addr, (uint8_t*)vstr.buf, vstr.len, args[2].u_int);
        } else {
            status = HAL_I2C_Master_Receive_DMA(self->i2c, i2c_addr, (uint8_t*)vstr.buf, vstr.len);
        }
    } else {
        if (query_irq() == IRQ_STATE_DISABLED) {
            status = HAL_I2C_Slave_Receive(self->i2c, (uint8_t*)vstr.buf, vstr.len, args[2].u_int);
        } else {
            status = HAL_I2C_Slave_Receive_DMA(self->i2c, (uint8_t*)vstr.buf, vstr.len);
        }
    }

    // if we used DMA, wait for it to finish
    if (query_irq() == IRQ_STATE_ENABLED) {
        if (status == HAL_OK) {
            status = i2c_wait_dma_finished(self->i2c, args[2].u_int);
        }
        dma_deinit(self->rx_dma_descr);
    }

    if (status != HAL_OK) {
        mp_hal_raise(status);
    }

    // return the received data
    if (o_ret != MP_OBJ_NULL) {
        return o_ret;
    } else {
        return mp_obj_new_str_from_vstr(&mp_type_bytes, &vstr);
    }
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_i2c_recv_obj, 1, pyb_i2c_recv);

/// \method mem_read(data, addr, memaddr, timeout=5000, addr_size=8)
///
/// Read from the memory of an I2C device:
///
///   - `data` can be an integer or a buffer to read into
///   - `addr` is the I2C device address
///   - `memaddr` is the memory location within the I2C device
///   - `timeout` is the timeout in milliseconds to wait for the read
///   - `addr_size` selects width of memaddr: 8 or 16 bits
///
/// Returns the read data.
/// This is only valid in master mode.
STATIC const mp_arg_t pyb_i2c_mem_read_allowed_args[] = {
    { MP_QSTR_data,    MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
    { MP_QSTR_addr,    MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 0} },
    { MP_QSTR_memaddr, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 0} },
    { MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 5000} },
    { MP_QSTR_addr_size, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 8} },
};

STATIC mp_obj_t pyb_i2c_mem_read(mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
    // parse args
    pyb_i2c_obj_t *self = pos_args[0];
    mp_arg_val_t args[MP_ARRAY_SIZE(pyb_i2c_mem_read_allowed_args)];
    mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(pyb_i2c_mem_read_allowed_args), pyb_i2c_mem_read_allowed_args, args);

    if (!in_master_mode(self)) {
        nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError, "I2C must be a master"));
    }

    // get the buffer to read into
    vstr_t vstr;
    mp_obj_t o_ret = pyb_buf_get_for_recv(args[0].u_obj, &vstr);

    // get the addresses
    mp_uint_t i2c_addr = args[1].u_int << 1;
    mp_uint_t mem_addr = args[2].u_int;
    // determine width of mem_addr; default is 8 bits, entering any other value gives 16 bit width
    mp_uint_t mem_addr_size = I2C_MEMADD_SIZE_8BIT;
    if (args[4].u_int != 8) {
        mem_addr_size = I2C_MEMADD_SIZE_16BIT;
    }

    HAL_StatusTypeDef status;
    if (query_irq() == IRQ_STATE_DISABLED) {
        status = HAL_I2C_Mem_Read(self->i2c, i2c_addr, mem_addr, mem_addr_size, (uint8_t*)vstr.buf, vstr.len, args[3].u_int);
    } else {
        DMA_HandleTypeDef rx_dma;
        dma_init(&rx_dma, self->rx_dma_descr, self->i2c);
        self->i2c->hdmatx = NULL;
        self->i2c->hdmarx = &rx_dma;
        status = HAL_I2C_Mem_Read_DMA(self->i2c, i2c_addr, mem_addr, mem_addr_size, (uint8_t*)vstr.buf, vstr.len);
        if (status == HAL_OK) {
            status = i2c_wait_dma_finished(self->i2c, args[3].u_int);
        }
        dma_deinit(self->rx_dma_descr);
    }

    if (status != HAL_OK) {
        mp_hal_raise(status);
    }

    // return the read data
    if (o_ret != MP_OBJ_NULL) {
        return o_ret;
    } else {
        return mp_obj_new_str_from_vstr(&mp_type_bytes, &vstr);
    }
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_i2c_mem_read_obj, 1, pyb_i2c_mem_read);

/// \method mem_write(data, addr, memaddr, timeout=5000, addr_size=8)
///
/// Write to the memory of an I2C device:
///
///   - `data` can be an integer or a buffer to write from
///   - `addr` is the I2C device address
///   - `memaddr` is the memory location within the I2C device
///   - `timeout` is the timeout in milliseconds to wait for the write
///   - `addr_size` selects width of memaddr: 8 or 16 bits
///
/// Returns `None`.
/// This is only valid in master mode.
STATIC mp_obj_t pyb_i2c_mem_write(mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
    // parse args (same as mem_read)
    pyb_i2c_obj_t *self = pos_args[0];
    mp_arg_val_t args[MP_ARRAY_SIZE(pyb_i2c_mem_read_allowed_args)];
    mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(pyb_i2c_mem_read_allowed_args), pyb_i2c_mem_read_allowed_args, args);

    if (!in_master_mode(self)) {
        nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError, "I2C must be a master"));
    }

    // get the buffer to write from
    mp_buffer_info_t bufinfo;
    uint8_t data[1];
    pyb_buf_get_for_send(args[0].u_obj, &bufinfo, data);

    // get the addresses
    mp_uint_t i2c_addr = args[1].u_int << 1;
    mp_uint_t mem_addr = args[2].u_int;
    // determine width of mem_addr; default is 8 bits, entering any other value gives 16 bit width
    mp_uint_t mem_addr_size = I2C_MEMADD_SIZE_8BIT;
    if (args[4].u_int != 8) {
        mem_addr_size = I2C_MEMADD_SIZE_16BIT;
    }

    HAL_StatusTypeDef status;
    if (query_irq() == IRQ_STATE_DISABLED) {
        status = HAL_I2C_Mem_Write(self->i2c, i2c_addr, mem_addr, mem_addr_size, bufinfo.buf, bufinfo.len, args[3].u_int);
    } else {
        DMA_HandleTypeDef tx_dma;
        dma_init(&tx_dma, self->tx_dma_descr, self->i2c);
        self->i2c->hdmatx = &tx_dma;
        self->i2c->hdmarx = NULL;
        status = HAL_I2C_Mem_Write_DMA(self->i2c, i2c_addr, mem_addr, mem_addr_size, bufinfo.buf, bufinfo.len);
        if (status == HAL_OK) {
            status = i2c_wait_dma_finished(self->i2c, args[3].u_int);
        }
        dma_deinit(self->tx_dma_descr);
    }

    if (status != HAL_OK) {
        mp_hal_raise(status);
    }

    return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_i2c_mem_write_obj, 1, pyb_i2c_mem_write);

STATIC const mp_map_elem_t pyb_i2c_locals_dict_table[] = {
    // instance methods
    { MP_OBJ_NEW_QSTR(MP_QSTR_init), (mp_obj_t)&pyb_i2c_init_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_deinit), (mp_obj_t)&pyb_i2c_deinit_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_is_ready), (mp_obj_t)&pyb_i2c_is_ready_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_scan), (mp_obj_t)&pyb_i2c_scan_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_send), (mp_obj_t)&pyb_i2c_send_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_recv), (mp_obj_t)&pyb_i2c_recv_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_mem_read), (mp_obj_t)&pyb_i2c_mem_read_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_mem_write), (mp_obj_t)&pyb_i2c_mem_write_obj },

    // class constants
    /// \constant MASTER - for initialising the bus to master mode
    /// \constant SLAVE - for initialising the bus to slave mode
    { MP_OBJ_NEW_QSTR(MP_QSTR_MASTER),       MP_OBJ_NEW_SMALL_INT(PYB_I2C_MASTER) },
    { MP_OBJ_NEW_QSTR(MP_QSTR_SLAVE),        MP_OBJ_NEW_SMALL_INT(PYB_I2C_SLAVE) },
};

STATIC MP_DEFINE_CONST_DICT(pyb_i2c_locals_dict, pyb_i2c_locals_dict_table);

const mp_obj_type_t pyb_i2c_type = {
    { &mp_type_type },
    .name = MP_QSTR_I2C,
    .print = pyb_i2c_print,
    .make_new = pyb_i2c_make_new,
    .locals_dict = (mp_obj_t)&pyb_i2c_locals_dict,
};