CircuitPython

Source code browser

Note: This site will be taken down by the end of the year

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
#include <stdint.h>
#include <string.h>

#include "py/nlr.h"
#include "py/compile.h"
#include "py/mphal.h"
#include "py/runtime.h"
#include "py/repl.h"
#include "py/gc.h"
#include "py/stackctrl.h"

#include "lib/fatfs/ff.h"
#include "lib/fatfs/diskio.h"
#include "lib/mp-readline/readline.h"
#include "lib/utils/pyexec.h"
#include "extmod/fsusermount.h"

#include "asf/common/services/sleepmgr/sleepmgr.h"
#include "asf/common/services/usb/udc/udc.h"
#include "asf/common2/services/delay/delay.h"
#include "asf/sam0/drivers/nvm/nvm.h"
#include "asf/sam0/drivers/port/port.h"
#include "asf/sam0/drivers/sercom/usart/usart.h"
#include "asf/sam0/drivers/system/system.h"
#include <board.h>

#include "common-hal/nativeio/AnalogIn.h"
#include "common-hal/nativeio/PulseOut.h"
#include "common-hal/nativeio/PWMOut.h"
#include "common-hal/usb_hid/__init__.h"

#ifdef EXPRESS_BOARD
#include "common-hal/nativeio/types.h"
#include "QTouch/touch_api_ptc.h"
#define INTERNAL_CIRCUITPY_CONFIG_START_ADDR (0x00040000 - 0x100)
#else
#define INTERNAL_CIRCUITPY_CONFIG_START_ADDR (0x00040000 - 0x010000 - 0x100)
#endif

#include "autoreset.h"
#include "mpconfigboard.h"
#include "rgb_led_status.h"
#include "tick.h"

fs_user_mount_t fs_user_mount_flash;

void do_str(const char *src, mp_parse_input_kind_t input_kind) {
    mp_lexer_t *lex = mp_lexer_new_from_str_len(MP_QSTR__lt_stdin_gt_, src, strlen(src), 0);
    if (lex == NULL) {
        printf("MemoryError: lexer could not allocate memory\n");
        return;
    }

    nlr_buf_t nlr;
    if (nlr_push(&nlr) == 0) {
        qstr source_name = lex->source_name;
        mp_parse_tree_t parse_tree = mp_parse(lex, input_kind);
        mp_obj_t module_fun = mp_compile(&parse_tree, source_name, MP_EMIT_OPT_NONE, true);
        mp_call_function_0(module_fun);
        nlr_pop();
    } else {
        // uncaught exception
        mp_obj_print_exception(&mp_plat_print, (mp_obj_t)nlr.ret_val);
    }
}

extern void flash_init_vfs(fs_user_mount_t *vfs);

// we don't make this function static because it needs a lot of stack and we
// want it to be executed without using stack within main() function
void init_flash_fs(void) {
    // init the vfs object
    fs_user_mount_t *vfs = &fs_user_mount_flash;
    vfs->str = "/flash";
    vfs->len = 6;
    vfs->flags = 0;
    flash_init_vfs(vfs);

    // put the flash device in slot 0 (it will be unused at this point)
    MP_STATE_PORT(fs_user_mount)[0] = vfs;

    // try to mount the flash
    FRESULT res = f_mount(&vfs->fatfs, vfs->str, 1);

    if (res == FR_NO_FILESYSTEM) {
        // no filesystem, or asked to reset it, so create a fresh one

        // We are before USB initializes so temporarily undo the USB_WRITEABLE
        // requirement.
        bool usb_writeable = (vfs->flags & FSUSER_USB_WRITEABLE) > 0;
        vfs->flags &= ~FSUSER_USB_WRITEABLE;

        res = f_mkfs("/flash", 0, 0);
        if (res != FR_OK) {
            MP_STATE_PORT(fs_user_mount)[0] = NULL;
            return;
        }

        // set label
        f_setlabel("CIRCUITPY");

        if (usb_writeable) {
            vfs->flags |= FSUSER_USB_WRITEABLE;
        }
    } else if (res != FR_OK) {
        MP_STATE_PORT(fs_user_mount)[0] = NULL;
        return;
    }

    // The current directory is used as the boot up directory.
    // It is set to the internal flash filesystem by default.
    f_chdrive("/flash");
}

static char *stack_top;
static char heap[16384];

void reset_mp(void) {
    new_status_color(0x8f008f);
    autoreset_stop();
    autoreset_enable();

    // Sync the file systems in case any used RAM from the GC to cache. As soon
    // as we re-init the GC all bets are off on the cache.
    disk_ioctl(0, CTRL_SYNC, NULL);
    disk_ioctl(1, CTRL_SYNC, NULL);
    disk_ioctl(2, CTRL_SYNC, NULL);

    #if MICROPY_ENABLE_GC
    gc_init(heap, heap + sizeof(heap));
    #endif
    mp_init();
    mp_obj_list_init(mp_sys_path, 0);
    mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR_)); // current dir (or base dir of the script)
    mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR__slash_flash));
    mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR__slash_flash_slash_lib));
    mp_obj_list_init(mp_sys_argv, 0);
}

#ifdef EXPRESS_BOARD
extern nativeio_touchin_obj_t *active_touchin_obj[DEF_SELFCAP_NUM_CHANNELS];
extern touch_selfcap_config_t selfcap_config;
#endif
extern volatile bool mp_msc_enabled;

void reset_samd21(void) {
    // Reset all SERCOMs except the one being used by the SPI flash.
    Sercom *sercom_instances[SERCOM_INST_NUM] = SERCOM_INSTS;
    for (int i = 0; i < SERCOM_INST_NUM; i++) {
        #ifdef SPI_FLASH_SERCOM
            if (sercom_instances[i] == SPI_FLASH_SERCOM) {
                continue;
            }
        #endif
        #ifdef MICROPY_HW_APA102_SERCOM
            if (sercom_instances[i] == MICROPY_HW_APA102_SERCOM) {
                continue;
            }
        #endif
        sercom_instances[i]->SPI.CTRLA.bit.SWRST = 1;
    }

#ifdef EXPRESS_BOARD
    touch_selfcap_sensors_deinit();
    for (int i = 0; i < selfcap_config.num_channels; i++) {
        active_touchin_obj[i] = NULL;
    }
    selfcap_config.num_channels = 0;
    selfcap_config.num_sensors = 0;
#endif

    analogin_reset();

    pulseout_reset();

    // Wait for the DAC to sync.
    while (DAC->STATUS.reg & DAC_STATUS_SYNCBUSY) {}
    DAC->CTRLA.reg |= DAC_CTRLA_SWRST;

    struct system_pinmux_config config;
    system_pinmux_get_config_defaults(&config);
    config.powersave = true;

    uint32_t pin_mask[2] = PORT_OUT_IMPLEMENTED;

    system_pinmux_group_set_config(&(PORT->Group[0]), pin_mask[0] & ~MICROPY_PORT_A, &config);
    system_pinmux_group_set_config(&(PORT->Group[1]), pin_mask[1] & ~MICROPY_PORT_B, &config);

    pwmout_reset();

    usb_hid_reset();

#ifdef CALIBRATE_CRYSTALLESS
    // If we are on USB lets double check our fine calibration for the clock and
    // save the new value if its different enough.
    if (mp_msc_enabled) {
        SYSCTRL->DFLLSYNC.bit.READREQ = 1;
        uint16_t saved_calibration = 0x1ff;
        if (strcmp((char*) INTERNAL_CIRCUITPY_CONFIG_START_ADDR, "CIRCUITPYTHON1") == 0) {
            saved_calibration = ((uint16_t *) INTERNAL_CIRCUITPY_CONFIG_START_ADDR)[8];
        }
        while (SYSCTRL->PCLKSR.bit.DFLLRDY == 0) {
            // TODO(tannewt): Run the mass storage stuff if this takes a while.
        }
        int16_t current_calibration = SYSCTRL->DFLLVAL.bit.FINE;
        if (abs(current_calibration - saved_calibration) > 10) {
            enum status_code error_code;
            uint8_t page_buffer[NVMCTRL_ROW_SIZE];
            for (int i = 0; i < NVMCTRL_ROW_PAGES; i++) {
                do
                {
                    error_code = nvm_read_buffer(INTERNAL_CIRCUITPY_CONFIG_START_ADDR + i * NVMCTRL_PAGE_SIZE,
                                                 page_buffer + i * NVMCTRL_PAGE_SIZE,
                                                 NVMCTRL_PAGE_SIZE);
                } while (error_code == STATUS_BUSY);
            }
            // If this is the first write, include the header.
            if (strcmp((char*) page_buffer, "CIRCUITPYTHON1") != 0) {
                memcpy(page_buffer, "CIRCUITPYTHON1", 15);
            }
            // First 16 bytes (0-15) are ID. Little endian!
            page_buffer[16] = current_calibration & 0xff;
            page_buffer[17] = current_calibration >> 8;
            do
            {
                error_code = nvm_erase_row(INTERNAL_CIRCUITPY_CONFIG_START_ADDR);
            } while (error_code == STATUS_BUSY);
            for (int i = 0; i < NVMCTRL_ROW_PAGES; i++) {
                do
                {
                    error_code = nvm_write_buffer(INTERNAL_CIRCUITPY_CONFIG_START_ADDR + i * NVMCTRL_PAGE_SIZE,
                                                  page_buffer + i * NVMCTRL_PAGE_SIZE,
                                                  NVMCTRL_PAGE_SIZE);
                } while (error_code == STATUS_BUSY);
            }
        }
    }
#endif
}

bool maybe_run(const char* filename, pyexec_result_t* exec_result) {
    FILINFO fno;
#if _USE_LFN
    fno.lfname = NULL;
    fno.lfsize = 0;
#endif
    FRESULT res = f_stat(filename, &fno);
    if (res != FR_OK || fno.fattrib & AM_DIR) {
        return false;
    }
    mp_hal_stdout_tx_str(filename);
    mp_hal_stdout_tx_str(" output:\r\n");
    pyexec_file(filename, exec_result);
    return true;
}

bool start_mp(void) {
    bool cdc_enabled_at_start = mp_cdc_enabled;
    #ifdef AUTORESET_DELAY_MS
    if (cdc_enabled_at_start) {
        mp_hal_stdout_tx_str("\r\n");
        mp_hal_stdout_tx_str("Auto-soft reset is on. Simply save files over USB to run them.\r\n");
    }
    #endif

    new_status_color(BOOT_RUNNING);
    pyexec_result_t result;
    bool found_boot = maybe_run("settings.txt", &result) ||
                      maybe_run("settings.py", &result) ||
                      maybe_run("boot.py", &result) ||
                      maybe_run("boot.txt", &result);
    bool found_main = false;
    if (!found_boot || !(result.return_code & PYEXEC_FORCED_EXIT)) {
        new_status_color(MAIN_RUNNING);
        found_main = maybe_run("code.txt", &result) ||
                     maybe_run("code.py", &result) ||
                     maybe_run("main.py", &result) ||
                     maybe_run("main.txt", &result);
    }

    if (result.return_code & PYEXEC_FORCED_EXIT) {
        return reset_next_character;
    }

    // If not is USB mode then do not skip the repl.
    #ifndef USB_REPL
    return false;
    #endif

    // Wait for connection or character.
    bool cdc_enabled_before = false;
    #if defined(MICROPY_HW_NEOPIXEL) || (defined(MICROPY_HW_APA102_MOSI) && defined(MICROPY_HW_APA102_SCK))
    new_status_color(ALL_DONE);
    uint32_t pattern_start = ticks_ms;

    uint32_t total_exception_cycle = 0;
    uint8_t ones = result.exception_line % 10;
    ones += ones > 0 ? 1 : 0;
    uint8_t tens = (result.exception_line / 10) % 10;
    tens += tens > 0 ? 1 : 0;
    uint8_t hundreds = (result.exception_line / 100) % 10;
    hundreds += hundreds > 0 ? 1 : 0;
    uint8_t thousands = (result.exception_line / 1000) % 10;
    thousands += thousands > 0 ? 1 : 0;
    uint8_t digit_sum = ones + tens + hundreds + thousands;
    uint8_t num_places = 0;
    uint16_t line = result.exception_line;
    for (int i = 0; i < 4; i++) {
        if ((line % 10) > 0) {
            num_places++;
        }
        line /= 10;
    }
    if (result.return_code == PYEXEC_EXCEPTION) {
        total_exception_cycle = EXCEPTION_TYPE_LENGTH_MS * 3 + LINE_NUMBER_TOGGLE_LENGTH * digit_sum + LINE_NUMBER_TOGGLE_LENGTH * num_places;
    }
    #endif
    while (true) {
        #ifdef MICROPY_VM_HOOK_LOOP
            MICROPY_VM_HOOK_LOOP
        #endif
        if (reset_next_character) {
            return true;
        }
        if (usb_rx_count > 0) {
            // Skip REPL if reset was requested.
            return receive_usb() == CHAR_CTRL_D;
        }

        if (!cdc_enabled_before && mp_cdc_enabled) {
            if (cdc_enabled_at_start) {
                mp_hal_stdout_tx_str("\r\n\r\n");
            } else {
                mp_hal_stdout_tx_str("Auto-soft reset is on. Simply save files over USB to run them.\r\n");
            }
            mp_hal_stdout_tx_str("Press any key to enter the REPL and disable auto-reset. Use CTRL-D to soft reset.\r\n");
        }
        if (cdc_enabled_before && !mp_cdc_enabled) {
            cdc_enabled_at_start = false;
        }
        cdc_enabled_before = mp_cdc_enabled;

        #if defined(MICROPY_HW_NEOPIXEL) || (defined(MICROPY_HW_APA102_MOSI) && defined(MICROPY_HW_APA102_SCK))
        uint32_t tick_diff = ticks_ms - pattern_start;
        if (result.return_code != PYEXEC_EXCEPTION) {
            // All is good. Ramp ALL_DONE up and down.
            if (tick_diff > ALL_GOOD_CYCLE_MS) {
                pattern_start = ticks_ms;
                tick_diff = 0;
            }

            uint16_t brightness = tick_diff * 255 / (ALL_GOOD_CYCLE_MS / 2);
            if (brightness > 255) {
                brightness = 511 - brightness;
            }
            new_status_color(color_brightness(ALL_DONE, brightness));
        } else {
            if (tick_diff > total_exception_cycle) {
                pattern_start = ticks_ms;
                tick_diff = 0;
            }
            // First flash the file color.
            if (tick_diff < EXCEPTION_TYPE_LENGTH_MS) {
                if (found_main) {
                    new_status_color(MAIN_RUNNING);
                } else {
                    new_status_color(BOOT_RUNNING);
                }
            // Next flash the exception color.
            } else if (tick_diff < EXCEPTION_TYPE_LENGTH_MS * 2) {
                if (mp_obj_is_subclass_fast(result.exception_type, &mp_type_IndentationError)) {
                    new_status_color(INDENTATION_ERROR);
                } else if (mp_obj_is_subclass_fast(result.exception_type, &mp_type_SyntaxError)) {
                    new_status_color(SYNTAX_ERROR);
                } else if (mp_obj_is_subclass_fast(result.exception_type, &mp_type_NameError)) {
                    new_status_color(NAME_ERROR);
                } else if (mp_obj_is_subclass_fast(result.exception_type, &mp_type_OSError)) {
                    new_status_color(OS_ERROR);
                } else if (mp_obj_is_subclass_fast(result.exception_type, &mp_type_ValueError)) {
                    new_status_color(VALUE_ERROR);
                } else {
                    new_status_color(OTHER_ERROR);
                }
            // Finally flash the line number digits from highest to lowest.
            // Zeroes will not produce a flash but can be read by the absence of
            // a color from the sequence.
            } else if (tick_diff < (EXCEPTION_TYPE_LENGTH_MS * 2 + LINE_NUMBER_TOGGLE_LENGTH * digit_sum)) {
                uint32_t digit_diff = tick_diff - EXCEPTION_TYPE_LENGTH_MS * 2;
                if ((digit_diff % LINE_NUMBER_TOGGLE_LENGTH) < (LINE_NUMBER_TOGGLE_LENGTH / 2)) {
                    new_status_color(BLACK);
                } else if (digit_diff < LINE_NUMBER_TOGGLE_LENGTH * thousands) {
                    if (digit_diff < LINE_NUMBER_TOGGLE_LENGTH) {
                        new_status_color(BLACK);
                    } else {
                        new_status_color(THOUSANDS);
                    }
                } else if (digit_diff < LINE_NUMBER_TOGGLE_LENGTH * (thousands + hundreds)) {
                    if (digit_diff < LINE_NUMBER_TOGGLE_LENGTH * (thousands + 1)) {
                        new_status_color(BLACK);
                    } else {
                        new_status_color(HUNDREDS);
                    }
                } else if (digit_diff < LINE_NUMBER_TOGGLE_LENGTH * (thousands + hundreds + tens)) {
                    if (digit_diff < LINE_NUMBER_TOGGLE_LENGTH * (thousands + hundreds + 1)) {
                        new_status_color(BLACK);
                    } else {
                        new_status_color(TENS);
                    }
                } else {
                    if (digit_diff < LINE_NUMBER_TOGGLE_LENGTH * (thousands + hundreds + tens + 1)) {
                        new_status_color(BLACK);
                    } else {
                        new_status_color(ONES);
                    }
                }
            } else {
                new_status_color(BLACK);
            }
        }
        #else
        (void) found_main; // Pretend to use found_main so the compiler doesn't complain.
        #endif
    }
}

#ifdef UART_REPL
struct usart_module usart_instance;
#endif

#ifdef ENABLE_MICRO_TRACE_BUFFER
// Stores 2 ^ TRACE_BUFFER_MAGNITUDE_PACKETS packets.
// 7 -> 128 packets
#define TRACE_BUFFER_MAGNITUDE_PACKETS 7
// Size in uint32_t. Two per packet.
#define TRACE_BUFFER_SIZE (1 << (TRACE_BUFFER_MAGNITUDE_PACKETS + 1))
// Size in bytes. 4 bytes per uint32_t.
#define TRACE_BUFFER_SIZE_BYTES (TRACE_BUFFER_SIZE << 2)
__attribute__((__aligned__(TRACE_BUFFER_SIZE_BYTES))) uint32_t mtb[TRACE_BUFFER_SIZE];
#endif

// Serial number as hex characters.
char serial_number[USB_DEVICE_GET_SERIAL_NAME_LENGTH];
void load_serial_number(void) {
    char nibble_to_hex[16] = {'0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A',
        'B', 'C', 'D', 'E', 'F'};
    uint32_t* addresses[4] = {(uint32_t *) 0x0080A00C, (uint32_t *) 0x0080A040,
                              (uint32_t *) 0x0080A044, (uint32_t *) 0x0080A048};
    for (int i = 0; i < 4; i++) {
        for (int j = 0; j < 8; j++) {
            uint8_t nibble = (*(addresses[i]) >> j * 4) & 0xf;
            serial_number[i * 8 + j] = nibble_to_hex[nibble];
        }
    }
}

void samd21_init(void) {
#ifdef ENABLE_MICRO_TRACE_BUFFER
    REG_MTB_POSITION = ((uint32_t) (mtb - REG_MTB_BASE)) & 0xFFFFFFF8;
    REG_MTB_FLOW = (((uint32_t) mtb - REG_MTB_BASE) + TRACE_BUFFER_SIZE_BYTES) & 0xFFFFFFF8;
    REG_MTB_MASTER = 0x80000000 + (TRACE_BUFFER_MAGNITUDE_PACKETS - 1);
#endif

    load_serial_number();

    irq_initialize_vectors();
    cpu_irq_enable();

    // Initialize the sleep manager
    sleepmgr_init();


    uint16_t dfll_fine_calibration = 0x1ff;
#ifdef CALIBRATE_CRYSTALLESS
    // This is stored in an NVM page after the text and data storage but before
    // the optional file system. The first 16 bytes are the identifier for the
    // section.
    if (strcmp((char*) INTERNAL_CIRCUITPY_CONFIG_START_ADDR, "CIRCUITPYTHON1") == 0) {
        dfll_fine_calibration = ((uint16_t *) INTERNAL_CIRCUITPY_CONFIG_START_ADDR)[8];
    }
#endif

    // We pass in the DFLL fine calibration because we can't change it once the
    // clock is going.
    system_init(dfll_fine_calibration);

    delay_init();

    board_init();

    // Configure millisecond timer initialization.
    tick_init();

    // Uncomment to init PIN_PA17 for debugging.
    // struct port_config pin_conf;
    // port_get_config_defaults(&pin_conf);
    //
    // pin_conf.direction  = PORT_PIN_DIR_OUTPUT;
    // port_pin_set_config(MICROPY_HW_LED1, &pin_conf);
    // port_pin_set_output_level(MICROPY_HW_LED1, false);

    rgb_led_status_init();

    // Init the nvm controller.
    struct nvm_config config_nvm;
    nvm_get_config_defaults(&config_nvm);
    config_nvm.manual_page_write = false;
    nvm_set_config(&config_nvm);
}

extern uint32_t _estack;
extern uint32_t _ebss;

int main(void) {
    // initialise the cpu and peripherals
    samd21_init();

    int stack_dummy;
    // Store the location of stack_dummy as an approximation for the top of the
    // stack so the GC can account for objects that may be referenced by the
    // stack between here and where gc_collect is called.
    stack_top = (char*)&stack_dummy;

    // Stack limit should be less than real stack size, so we have a chance
    // to recover from limit hit.  (Limit is measured in bytes.)
    mp_stack_ctrl_init();
    mp_stack_set_limit((char*)&_estack - (char*)&_ebss - 1024);

    // Initialise the local flash filesystem after the gc in case we need to
    // grab memory from it. Create it if needed, mount in on /flash, and set it
    // as current dir.
    init_flash_fs();

    usb_hid_init();

    // Start USB after getting everything going.
    #ifdef USB_REPL
        udc_start();
    #endif


    // Main script is finished, so now go into REPL mode.
    // The REPL mode can change, or it can request a soft reset.
    int exit_code = PYEXEC_FORCED_EXIT;
    bool skip_repl = true;
    bool first_run = true;
    for (;;) {
        if (!skip_repl) {
            autoreset_disable();
            new_status_color(REPL_RUNNING);
            if (pyexec_mode_kind == PYEXEC_MODE_RAW_REPL) {
                exit_code = pyexec_raw_repl();
            } else {
                exit_code = pyexec_friendly_repl();
            }
        }
        if (exit_code == PYEXEC_FORCED_EXIT) {
            if (!first_run) {
                mp_hal_stdout_tx_str("soft reboot\r\n");
            }
            reset_samd21();
            reset_mp();
            first_run = false;
            skip_repl = start_mp();
        } else if (exit_code != 0) {
            break;
        }
    }
    mp_deinit();
    return 0;
}

void gc_collect(void) {
    // WARNING: This gc_collect implementation doesn't try to get root
    // pointers from CPU registers, and thus may function incorrectly.
    void *dummy;
    gc_collect_start();
    // This naively collects all object references from an approximate stack
    // range.
    gc_collect_root(&dummy, ((mp_uint_t)stack_top - (mp_uint_t)&dummy) / sizeof(mp_uint_t));
    gc_collect_end();
}

mp_import_stat_t fat_vfs_import_stat(const char *path);
mp_import_stat_t mp_import_stat(const char *path) {
    #if MICROPY_VFS_FAT
    return fat_vfs_import_stat(path);
    #else
    (void)path;
    return MP_IMPORT_STAT_NO_EXIST;
    #endif
}

void nlr_jump_fail(void *val) {
}

void NORETURN __fatal_error(const char *msg) {
    while (1);
}

#ifndef NDEBUG
void MP_WEAK __assert_func(const char *file, int line, const char *func, const char *expr) {
    printf("Assertion '%s' failed, at file %s:%d\n", expr, file, line);
    __fatal_error("Assertion failed");
}
#endif