CircuitPython

Source code browser

Note: This site will be taken down by the end of the year

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
/*
 * This file is part of the Micro Python project, http://micropython.org/
 *
 * The MIT License (MIT)
 *
 * Copyright (c) 2013, 2014 Damien P. George
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

#include <stdio.h>
#include <string.h>

#include "py/mphal.h"
#include "py/nlr.h"
#include "py/runtime.h"

#if MICROPY_HW_HAS_LCD

#include "pin.h"
#include "genhdr/pins.h"
#include "bufhelper.h"
#include "spi.h"
#include "font_petme128_8x8.h"
#include "lcd.h"

/// \moduleref pyb
/// \class LCD - LCD control for the LCD touch-sensor pyskin
///
/// The LCD class is used to control the LCD on the LCD touch-sensor pyskin,
/// LCD32MKv1.0.  The LCD is a 128x32 pixel monochrome screen, part NHD-C12832A1Z.
///
/// The pyskin must be connected in either the X or Y positions, and then
/// an LCD object is made using:
///
///     lcd = pyb.LCD('X')      # if pyskin is in the X position
///     lcd = pyb.LCD('Y')      # if pyskin is in the Y position
///
/// Then you can use:
///
///     lcd.light(True)                 # turn the backlight on
///     lcd.write('Hello world!\n')     # print text to the screen
///
/// This driver implements a double buffer for setting/getting pixels.
/// For example, to make a bouncing dot, try:
///
///     x = y = 0
///     dx = dy = 1
///     while True:
///         # update the dot's position
///         x += dx
///         y += dy
///
///         # make the dot bounce of the edges of the screen
///         if x <= 0 or x >= 127: dx = -dx
///         if y <= 0 or y >= 31: dy = -dy
///
///         lcd.fill(0)                 # clear the buffer
///         lcd.pixel(x, y, 1)          # draw the dot
///         lcd.show()                  # show the buffer
///         pyb.delay(50)               # pause for 50ms

#define LCD_INSTR (0)
#define LCD_DATA (1)

#define LCD_CHAR_BUF_W (16)
#define LCD_CHAR_BUF_H (4)

#define LCD_PIX_BUF_W (128)
#define LCD_PIX_BUF_H (32)
#define LCD_PIX_BUF_BYTE_SIZE (LCD_PIX_BUF_W * LCD_PIX_BUF_H / 8)

typedef struct _pyb_lcd_obj_t {
    mp_obj_base_t base;

    // hardware control for the LCD
    SPI_HandleTypeDef *spi;
    const pin_obj_t *pin_cs1;
    const pin_obj_t *pin_rst;
    const pin_obj_t *pin_a0;
    const pin_obj_t *pin_bl;

    // character buffer for stdout-like output
    char char_buffer[LCD_CHAR_BUF_W * LCD_CHAR_BUF_H];
    int line;
    int column;
    int next_line;

    // double buffering for pixel buffer
    byte pix_buf[LCD_PIX_BUF_BYTE_SIZE];
    byte pix_buf2[LCD_PIX_BUF_BYTE_SIZE];
} pyb_lcd_obj_t;

STATIC void lcd_delay(void) {
    __asm volatile ("nop\nnop");
}

STATIC void lcd_out(pyb_lcd_obj_t *lcd, int instr_data, uint8_t i) {
    lcd_delay();
    mp_hal_pin_low(lcd->pin_cs1); // CS=0; enable
    if (instr_data == LCD_INSTR) {
        mp_hal_pin_low(lcd->pin_a0); // A0=0; select instr reg
    } else {
        mp_hal_pin_high(lcd->pin_a0); // A0=1; select data reg
    }
    lcd_delay();
    HAL_SPI_Transmit(lcd->spi, &i, 1, 1000);
    lcd_delay();
    mp_hal_pin_high(lcd->pin_cs1); // CS=1; disable
}

// write a string to the LCD at the current cursor location
// output it straight away (doesn't use the pixel buffer)
STATIC void lcd_write_strn(pyb_lcd_obj_t *lcd, const char *str, unsigned int len) {
    int redraw_min = lcd->line * LCD_CHAR_BUF_W + lcd->column;
    int redraw_max = redraw_min;
    for (; len > 0; len--, str++) {
        // move to next line if needed
        if (lcd->next_line) {
            if (lcd->line + 1 < LCD_CHAR_BUF_H) {
                lcd->line += 1;
            } else {
                lcd->line = LCD_CHAR_BUF_H - 1;
                for (int i = 0; i < LCD_CHAR_BUF_W * (LCD_CHAR_BUF_H - 1); i++) {
                    lcd->char_buffer[i] = lcd->char_buffer[i + LCD_CHAR_BUF_W];
                }
                for (int i = 0; i < LCD_CHAR_BUF_W; i++) {
                    lcd->char_buffer[LCD_CHAR_BUF_W * (LCD_CHAR_BUF_H - 1) + i] = ' ';
                }
                redraw_min = 0;
                redraw_max = LCD_CHAR_BUF_W * LCD_CHAR_BUF_H;
            }
            lcd->next_line = 0;
            lcd->column = 0;
        }
        if (*str == '\n') {
            lcd->next_line = 1;
        } else if (*str == '\r') {
            lcd->column = 0;
        } else if (*str == '\b') {
            if (lcd->column > 0) {
                lcd->column--;
                redraw_min = 0; // could optimise this to not redraw everything
            }
        } else if (lcd->column >= LCD_CHAR_BUF_W) {
            lcd->next_line = 1;
            str -= 1;
            len += 1;
        } else {
            lcd->char_buffer[lcd->line * LCD_CHAR_BUF_W + lcd->column] = *str;
            lcd->column += 1;
            int max = lcd->line * LCD_CHAR_BUF_W + lcd->column;
            if (max > redraw_max) {
                redraw_max = max;
            }
        }
    }

    // we must draw upside down, because the LCD is upside down
    for (int i = redraw_min; i < redraw_max; i++) {
        uint page = i / LCD_CHAR_BUF_W;
        uint offset = 8 * (LCD_CHAR_BUF_W - 1 - (i - (page * LCD_CHAR_BUF_W)));
        lcd_out(lcd, LCD_INSTR, 0xb0 | page); // page address set
        lcd_out(lcd, LCD_INSTR, 0x10 | ((offset >> 4) & 0x0f)); // column address set upper
        lcd_out(lcd, LCD_INSTR, 0x00 | (offset & 0x0f)); // column address set lower
        int chr = lcd->char_buffer[i];
        if (chr < 32 || chr > 126) {
            chr = 127;
        }
        const uint8_t *chr_data = &font_petme128_8x8[(chr - 32) * 8];
        for (int j = 7; j >= 0; j--) {
            lcd_out(lcd, LCD_DATA, chr_data[j]);
        }
    }
}

/// \classmethod \constructor(skin_position)
///
/// Construct an LCD object in the given skin position.  `skin_position` can be 'X' or 'Y', and
/// should match the position where the LCD pyskin is plugged in.
STATIC mp_obj_t pyb_lcd_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
    // check arguments
    mp_arg_check_num(n_args, n_kw, 1, 1, false);

    // get LCD position
    const char *lcd_id = mp_obj_str_get_str(args[0]);

    // create lcd object
    pyb_lcd_obj_t *lcd = m_new_obj(pyb_lcd_obj_t);
    lcd->base.type = &pyb_lcd_type;

    // configure pins
    // TODO accept an SPI object and pin objects for full customisation
    if ((lcd_id[0] | 0x20) == 'x' && lcd_id[1] == '\0') {
        lcd->spi = &SPIHandle1;
        lcd->pin_cs1 = &pyb_pin_X3;
        lcd->pin_rst = &pyb_pin_X4;
        lcd->pin_a0 = &pyb_pin_X5;
        lcd->pin_bl = &pyb_pin_X12;
    } else if ((lcd_id[0] | 0x20) == 'y' && lcd_id[1] == '\0') {
        lcd->spi = &SPIHandle2;
        lcd->pin_cs1 = &pyb_pin_Y3;
        lcd->pin_rst = &pyb_pin_Y4;
        lcd->pin_a0 = &pyb_pin_Y5;
        lcd->pin_bl = &pyb_pin_Y12;
    } else {
        nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "LCD bus '%s' does not exist", lcd_id));
    }

    // init the SPI bus
    SPI_InitTypeDef *init = &lcd->spi->Init;
    init->Mode = SPI_MODE_MASTER;

    // compute the baudrate prescaler from the desired baudrate
    // select a prescaler that yields at most the desired baudrate
    uint spi_clock;
    if (lcd->spi->Instance == SPI1) {
        // SPI1 is on APB2
        spi_clock = HAL_RCC_GetPCLK2Freq();
    } else {
        // SPI2 and SPI3 are on APB1
        spi_clock = HAL_RCC_GetPCLK1Freq();
    }
    uint br_prescale = spi_clock / 16000000; // datasheet says LCD can run at 20MHz, but we go for 16MHz
    if (br_prescale <= 2) { init->BaudRatePrescaler = SPI_BAUDRATEPRESCALER_2; }
    else if (br_prescale <= 4) { init->BaudRatePrescaler = SPI_BAUDRATEPRESCALER_4; }
    else if (br_prescale <= 8) { init->BaudRatePrescaler = SPI_BAUDRATEPRESCALER_8; }
    else if (br_prescale <= 16) { init->BaudRatePrescaler = SPI_BAUDRATEPRESCALER_16; }
    else if (br_prescale <= 32) { init->BaudRatePrescaler = SPI_BAUDRATEPRESCALER_32; }
    else if (br_prescale <= 64) { init->BaudRatePrescaler = SPI_BAUDRATEPRESCALER_64; }
    else if (br_prescale <= 128) { init->BaudRatePrescaler = SPI_BAUDRATEPRESCALER_128; }
    else { init->BaudRatePrescaler = SPI_BAUDRATEPRESCALER_256; }

    // data is sent bigendian, latches on rising clock
    init->CLKPolarity = SPI_POLARITY_HIGH;
    init->CLKPhase = SPI_PHASE_2EDGE;
    init->Direction = SPI_DIRECTION_2LINES;
    init->DataSize = SPI_DATASIZE_8BIT;
    init->NSS = SPI_NSS_SOFT;
    init->FirstBit = SPI_FIRSTBIT_MSB;
    init->TIMode = SPI_TIMODE_DISABLED;
    init->CRCCalculation = SPI_CRCCALCULATION_DISABLED;
    init->CRCPolynomial = 0;

    // init the SPI bus
    spi_init(lcd->spi, false);

    // set the pins to default values
    mp_hal_pin_high(lcd->pin_cs1);
    mp_hal_pin_high(lcd->pin_rst);
    mp_hal_pin_high(lcd->pin_a0);
    mp_hal_pin_low(lcd->pin_bl);

    // init the pins to be push/pull outputs
    mp_hal_pin_output(lcd->pin_cs1);
    mp_hal_pin_output(lcd->pin_rst);
    mp_hal_pin_output(lcd->pin_a0);
    mp_hal_pin_output(lcd->pin_bl);

    // init the LCD
    HAL_Delay(1); // wait a bit
    mp_hal_pin_low(lcd->pin_rst); // RST=0; reset
    HAL_Delay(1); // wait for reset; 2us min
    mp_hal_pin_high(lcd->pin_rst); // RST=1; enable
    HAL_Delay(1); // wait for reset; 2us min
    lcd_out(lcd, LCD_INSTR, 0xa0); // ADC select, normal
    lcd_out(lcd, LCD_INSTR, 0xc0); // common output mode select, normal (this flips the display)
    lcd_out(lcd, LCD_INSTR, 0xa2); // LCD bias set, 1/9 bias
    lcd_out(lcd, LCD_INSTR, 0x2f); // power control set, 0b111=(booster on, vreg on, vfollow on)
    lcd_out(lcd, LCD_INSTR, 0x21); // v0 voltage regulator internal resistor ratio set, 0b001=small
    lcd_out(lcd, LCD_INSTR, 0x81); // electronic volume mode set
    lcd_out(lcd, LCD_INSTR, 0x28); // electronic volume register set
    lcd_out(lcd, LCD_INSTR, 0x40); // display start line set, 0
    lcd_out(lcd, LCD_INSTR, 0xaf); // LCD display, on

    // clear LCD RAM
    for (int page = 0; page < 4; page++) {
        lcd_out(lcd, LCD_INSTR, 0xb0 | page); // page address set
        lcd_out(lcd, LCD_INSTR, 0x10); // column address set upper
        lcd_out(lcd, LCD_INSTR, 0x00); // column address set lower
        for (int i = 0; i < 128; i++) {
            lcd_out(lcd, LCD_DATA, 0x00);
        }
    }

    // clear local char buffer
    memset(lcd->char_buffer, ' ', LCD_CHAR_BUF_H * LCD_CHAR_BUF_W);
    lcd->line = 0;
    lcd->column = 0;
    lcd->next_line = 0;

    // clear local pixel buffer
    memset(lcd->pix_buf, 0, LCD_PIX_BUF_BYTE_SIZE);
    memset(lcd->pix_buf2, 0, LCD_PIX_BUF_BYTE_SIZE);

    return lcd;
}

/// \method command(instr_data, buf)
///
/// Send an arbitrary command to the LCD.  Pass 0 for `instr_data` to send an
/// instruction, otherwise pass 1 to send data.  `buf` is a buffer with the
/// instructions/data to send.
STATIC mp_obj_t pyb_lcd_command(mp_obj_t self_in, mp_obj_t instr_data_in, mp_obj_t val) {
    pyb_lcd_obj_t *self = self_in;

    // get whether instr or data
    int instr_data = mp_obj_get_int(instr_data_in);

    // get the buffer to send from
    mp_buffer_info_t bufinfo;
    uint8_t data[1];
    pyb_buf_get_for_send(val, &bufinfo, data);

    // send the data
    for (uint i = 0; i < bufinfo.len; i++) {
        lcd_out(self, instr_data, ((byte*)bufinfo.buf)[i]);
    }

    return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_3(pyb_lcd_command_obj, pyb_lcd_command);

/// \method contrast(value)
///
/// Set the contrast of the LCD.  Valid values are between 0 and 47.
STATIC mp_obj_t pyb_lcd_contrast(mp_obj_t self_in, mp_obj_t contrast_in) {
    pyb_lcd_obj_t *self = self_in;
    int contrast = mp_obj_get_int(contrast_in);
    if (contrast < 0) {
        contrast = 0;
    } else if (contrast > 0x2f) {
        contrast = 0x2f;
    }
    lcd_out(self, LCD_INSTR, 0x81); // electronic volume mode set
    lcd_out(self, LCD_INSTR, contrast); // electronic volume register set
    return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_lcd_contrast_obj, pyb_lcd_contrast);

/// \method light(value)
///
/// Turn the backlight on/off.  True or 1 turns it on, False or 0 turns it off.
STATIC mp_obj_t pyb_lcd_light(mp_obj_t self_in, mp_obj_t value) {
    pyb_lcd_obj_t *self = self_in;
    if (mp_obj_is_true(value)) {
        mp_hal_pin_high(self->pin_bl); // set pin high to turn backlight on
    } else {
        mp_hal_pin_low(self->pin_bl); // set pin low to turn backlight off
    }
    return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_lcd_light_obj, pyb_lcd_light);

/// \method write(str)
///
/// Write the string `str` to the screen.  It will appear immediately.
STATIC mp_obj_t pyb_lcd_write(mp_obj_t self_in, mp_obj_t str) {
    pyb_lcd_obj_t *self = self_in;
    mp_uint_t len;
    const char *data = mp_obj_str_get_data(str, &len);
    lcd_write_strn(self, data, len);
    return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_lcd_write_obj, pyb_lcd_write);

/// \method fill(colour)
///
/// Fill the screen with the given colour (0 or 1 for white or black).
///
/// This method writes to the hidden buffer.  Use `show()` to show the buffer.
STATIC mp_obj_t pyb_lcd_fill(mp_obj_t self_in, mp_obj_t col_in) {
    pyb_lcd_obj_t *self = self_in;
    int col = mp_obj_get_int(col_in);
    if (col) {
        col = 0xff;
    }
    memset(self->pix_buf, col, LCD_PIX_BUF_BYTE_SIZE);
    memset(self->pix_buf2, col, LCD_PIX_BUF_BYTE_SIZE);
    return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_lcd_fill_obj, pyb_lcd_fill);

/// \method get(x, y)
///
/// Get the pixel at the position `(x, y)`.  Returns 0 or 1.
///
/// This method reads from the visible buffer.
STATIC mp_obj_t pyb_lcd_get(mp_obj_t self_in, mp_obj_t x_in, mp_obj_t y_in) {
    pyb_lcd_obj_t *self = self_in;
    int x = mp_obj_get_int(x_in);
    int y = mp_obj_get_int(y_in);
    if (0 <= x && x <= 127 && 0 <= y && y <= 31) {
        uint byte_pos = x + 128 * ((uint)y >> 3);
        if (self->pix_buf[byte_pos] & (1 << (y & 7))) {
            return mp_obj_new_int(1);
        }
    }
    return mp_obj_new_int(0);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_3(pyb_lcd_get_obj, pyb_lcd_get);

/// \method pixel(x, y, colour)
///
/// Set the pixel at `(x, y)` to the given colour (0 or 1).
///
/// This method writes to the hidden buffer.  Use `show()` to show the buffer.
STATIC mp_obj_t pyb_lcd_pixel(mp_uint_t n_args, const mp_obj_t *args) {
    pyb_lcd_obj_t *self = args[0];
    int x = mp_obj_get_int(args[1]);
    int y = mp_obj_get_int(args[2]);
    if (0 <= x && x <= 127 && 0 <= y && y <= 31) {
        uint byte_pos = x + 128 * ((uint)y >> 3);
        if (mp_obj_get_int(args[3]) == 0) {
            self->pix_buf2[byte_pos] &= ~(1 << (y & 7));
        } else {
            self->pix_buf2[byte_pos] |= 1 << (y & 7);
        }
    }
    return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_lcd_pixel_obj, 4, 4, pyb_lcd_pixel);

/// \method text(str, x, y, colour)
///
/// Draw the given text to the position `(x, y)` using the given colour (0 or 1).
///
/// This method writes to the hidden buffer.  Use `show()` to show the buffer.
STATIC mp_obj_t pyb_lcd_text(mp_uint_t n_args, const mp_obj_t *args) {
    // extract arguments
    pyb_lcd_obj_t *self = args[0];
    mp_uint_t len;
    const char *data = mp_obj_str_get_data(args[1], &len);
    int x0 = mp_obj_get_int(args[2]);
    int y0 = mp_obj_get_int(args[3]);
    int col = mp_obj_get_int(args[4]);

    // loop over chars
    for (const char *top = data + len; data < top; data++) {
        // get char and make sure its in range of font
        uint chr = *(byte*)data;
        if (chr < 32 || chr > 127) {
            chr = 127;
        }
        // get char data
        const uint8_t *chr_data = &font_petme128_8x8[(chr - 32) * 8];
        // loop over char data
        for (uint j = 0; j < 8; j++, x0++) {
            if (0 <= x0 && x0 < LCD_PIX_BUF_W) { // clip x
                uint vline_data = chr_data[j]; // each byte of char data is a vertical column of 8 pixels, LSB at top
                for (int y = y0; vline_data; vline_data >>= 1, y++) { // scan over vertical column
                    if (vline_data & 1) { // only draw if pixel set
                        if (0 <= y && y < LCD_PIX_BUF_H) { // clip y
                            uint byte_pos = x0 + LCD_PIX_BUF_W * ((uint)y >> 3);
                            if (col == 0) {
                                // clear pixel
                                self->pix_buf2[byte_pos] &= ~(1 << (y & 7));
                            } else {
                                // set pixel
                                self->pix_buf2[byte_pos] |= 1 << (y & 7);
                            }
                        }
                    }
                }
            }
        }
    }

    return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_lcd_text_obj, 5, 5, pyb_lcd_text);

/// \method show()
///
/// Show the hidden buffer on the screen.
STATIC mp_obj_t pyb_lcd_show(mp_obj_t self_in) {
    pyb_lcd_obj_t *self = self_in;
    memcpy(self->pix_buf, self->pix_buf2, LCD_PIX_BUF_BYTE_SIZE);
    for (uint page = 0; page < 4; page++) {
        lcd_out(self, LCD_INSTR, 0xb0 | page); // page address set
        lcd_out(self, LCD_INSTR, 0x10); // column address set upper; 0
        lcd_out(self, LCD_INSTR, 0x00); // column address set lower; 0
        for (uint i = 0; i < 128; i++) {
            lcd_out(self, LCD_DATA, self->pix_buf[128 * page + 127 - i]);
        }
    }
    return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_lcd_show_obj, pyb_lcd_show);

STATIC const mp_map_elem_t pyb_lcd_locals_dict_table[] = {
    // instance methods
    { MP_OBJ_NEW_QSTR(MP_QSTR_command), (mp_obj_t)&pyb_lcd_command_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_contrast), (mp_obj_t)&pyb_lcd_contrast_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_light), (mp_obj_t)&pyb_lcd_light_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_write), (mp_obj_t)&pyb_lcd_write_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_fill), (mp_obj_t)&pyb_lcd_fill_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_get), (mp_obj_t)&pyb_lcd_get_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_pixel), (mp_obj_t)&pyb_lcd_pixel_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_text), (mp_obj_t)&pyb_lcd_text_obj },
    { MP_OBJ_NEW_QSTR(MP_QSTR_show), (mp_obj_t)&pyb_lcd_show_obj },
};

STATIC MP_DEFINE_CONST_DICT(pyb_lcd_locals_dict, pyb_lcd_locals_dict_table);

const mp_obj_type_t pyb_lcd_type = {
    { &mp_type_type },
    .name = MP_QSTR_LCD,
    .make_new = pyb_lcd_make_new,
    .locals_dict = (mp_obj_t)&pyb_lcd_locals_dict,
};

#endif // MICROPY_HW_HAS_LCD