CircuitPython

Source code browser

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
/*
 * This file is part of the MicroPython project, http://micropython.org/
 *
 * The MIT License (MIT)
 *
 * Copyright (c) 2013, 2014 Damien P. George
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

#include <stdio.h>
#include <stdint.h>
#include <string.h>

#include "py/runtime.h"
#include "timer.h"
#include "dac.h"
#include "dma.h"
#include "pin.h"
#include "genhdr/pins.h"

/// \moduleref pyb
/// \class DAC - digital to analog conversion
///
/// The DAC is used to output analog values (a specific voltage) on pin X5 or pin X6.
/// The voltage will be between 0 and 3.3V.
///
/// *This module will undergo changes to the API.*
///
/// Example usage:
///
///     from pyb import DAC
///
///     dac = DAC(1)            # create DAC 1 on pin X5
///     dac.write(128)          # write a value to the DAC (makes X5 1.65V)
///
/// To output a continuous sine-wave:
///
///     import math
///     from pyb import DAC
///
///     # create a buffer containing a sine-wave
///     buf = bytearray(100)
///     for i in range(len(buf)):
///         buf[i] = 128 + int(127 * math.sin(2 * math.pi * i / len(buf)))
///
///     # output the sine-wave at 400Hz
///     dac = DAC(1)
///     dac.write_timed(buf, 400 * len(buf), mode=DAC.CIRCULAR)

#if defined(MICROPY_HW_ENABLE_DAC) && MICROPY_HW_ENABLE_DAC

STATIC DAC_HandleTypeDef DAC_Handle;

void dac_init(void) {
    memset(&DAC_Handle, 0, sizeof DAC_Handle);
    DAC_Handle.Instance = DAC;
    DAC_Handle.State = HAL_DAC_STATE_RESET;
    HAL_DAC_Init(&DAC_Handle);
}

#if defined(TIM6)
STATIC void TIM6_Config(uint freq) {
    // Init TIM6 at the required frequency (in Hz)
    TIM_HandleTypeDef *tim = timer_tim6_init(freq);

    // TIM6 TRGO selection
    TIM_MasterConfigTypeDef config;
    config.MasterOutputTrigger = TIM_TRGO_UPDATE;
    config.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
    HAL_TIMEx_MasterConfigSynchronization(tim, &config);

    // TIM6 start counter
    HAL_TIM_Base_Start(tim);
}
#endif

STATIC uint32_t TIMx_Config(mp_obj_t timer) {
    // TRGO selection to trigger DAC
    TIM_HandleTypeDef *tim = pyb_timer_get_handle(timer);
    TIM_MasterConfigTypeDef config;
    config.MasterOutputTrigger = TIM_TRGO_UPDATE;
    config.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
    HAL_TIMEx_MasterConfigSynchronization(tim, &config);

    // work out the trigger channel (only certain ones are supported)
    if (tim->Instance == TIM2) {
        return DAC_TRIGGER_T2_TRGO;
    } else if (tim->Instance == TIM4) {
        return DAC_TRIGGER_T4_TRGO;
    } else if (tim->Instance == TIM5) {
        return DAC_TRIGGER_T5_TRGO;
    #if defined(TIM6)
    } else if (tim->Instance == TIM6) {
        return DAC_TRIGGER_T6_TRGO;
    #endif
    #if defined(TIM7)
    } else if (tim->Instance == TIM7) {
        return DAC_TRIGGER_T7_TRGO;
    #endif
    #if defined(TIM8)
    } else if (tim->Instance == TIM8) {
        return DAC_TRIGGER_T8_TRGO;
    #endif
    } else {
        mp_raise_ValueError("Timer does not support DAC triggering");
    }
}

/******************************************************************************/
// MicroPython bindings

typedef enum {
    DAC_STATE_RESET,
    DAC_STATE_WRITE_SINGLE,
    DAC_STATE_BUILTIN_WAVEFORM,
    DAC_STATE_DMA_WAVEFORM, // should be last enum since we use space beyond it
} pyb_dac_state_t;

typedef struct _pyb_dac_obj_t {
    mp_obj_base_t base;
    uint32_t dac_channel; // DAC_CHANNEL_1 or DAC_CHANNEL_2
    const dma_descr_t *tx_dma_descr;
    uint16_t pin; // GPIO_PIN_4 or GPIO_PIN_5
    uint8_t bits; // 8 or 12
    uint8_t state;
} pyb_dac_obj_t;

STATIC mp_obj_t pyb_dac_init_helper(pyb_dac_obj_t *self, mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
    static const mp_arg_t allowed_args[] = {
        { MP_QSTR_bits, MP_ARG_INT, {.u_int = 8} },
    };

    // parse args
    mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
    mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);

    // GPIO configuration
    GPIO_InitTypeDef GPIO_InitStructure;
    GPIO_InitStructure.Pin = self->pin;
    GPIO_InitStructure.Mode = GPIO_MODE_ANALOG;
    GPIO_InitStructure.Pull = GPIO_NOPULL;
    HAL_GPIO_Init(GPIOA, &GPIO_InitStructure);

    // DAC peripheral clock
    #if defined(MCU_SERIES_F4) || defined(MCU_SERIES_F7)
    __DAC_CLK_ENABLE();
    #elif defined(MCU_SERIES_L4)
    __HAL_RCC_DAC1_CLK_ENABLE();
    #else
    #error Unsupported Processor
    #endif

    // stop anything already going on
    __DMA1_CLK_ENABLE();
    DMA_HandleTypeDef DMA_Handle;
    /* Get currently configured dma */
    dma_init_handle(&DMA_Handle, self->tx_dma_descr, (void*)NULL);
    // Need to deinit DMA first
    DMA_Handle.State = HAL_DMA_STATE_READY;
    HAL_DMA_DeInit(&DMA_Handle);

    HAL_DAC_Stop(&DAC_Handle, self->dac_channel);
    if ((self->dac_channel == DAC_CHANNEL_1 && DAC_Handle.DMA_Handle1 != NULL)
            || (self->dac_channel == DAC_CHANNEL_2 && DAC_Handle.DMA_Handle2 != NULL)) {
        HAL_DAC_Stop_DMA(&DAC_Handle, self->dac_channel);
    }

    // set bit resolution
    if (args[0].u_int == 8 || args[0].u_int == 12) {
        self->bits = args[0].u_int;
    } else {
        mp_raise_ValueError("unsupported bits");
    }

    // reset state of DAC
    self->state = DAC_STATE_RESET;

    return mp_const_none;
}

// create the dac object
// currently support either DAC1 on X5 (id = 1) or DAC2 on X6 (id = 2)

/// \classmethod \constructor(port)
/// Construct a new DAC object.
///
/// `port` can be a pin object, or an integer (1 or 2).
/// DAC(1) is on pin X5 and DAC(2) is on pin X6.
STATIC mp_obj_t pyb_dac_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
    // check arguments
    mp_arg_check_num(n_args, n_kw, 1, MP_OBJ_FUN_ARGS_MAX, true);

    // get pin/channel to output on
    mp_int_t dac_id;
    if (MP_OBJ_IS_INT(args[0])) {
        dac_id = mp_obj_get_int(args[0]);
    } else {
        const pin_obj_t *pin = pin_find(args[0]);
        if (pin == &pin_A4) {
            dac_id = 1;
        } else if (pin == &pin_A5) {
            dac_id = 2;
        } else {
            nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "Pin(%q) doesn't have DAC capabilities", pin->name));
        }
    }

    pyb_dac_obj_t *dac = m_new_obj(pyb_dac_obj_t);
    dac->base.type = &pyb_dac_type;

    if (dac_id == 1) {
        dac->pin = GPIO_PIN_4;
        dac->dac_channel = DAC_CHANNEL_1;
        dac->tx_dma_descr = &dma_DAC_1_TX;
    } else if (dac_id == 2) {
        dac->pin = GPIO_PIN_5;
        dac->dac_channel = DAC_CHANNEL_2;
        dac->tx_dma_descr = &dma_DAC_2_TX;
    } else {
        nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "DAC(%d) doesn't exist", dac_id));
    }

    // configure the peripheral
    mp_map_t kw_args;
    mp_map_init_fixed_table(&kw_args, n_kw, args + n_args);
    pyb_dac_init_helper(dac, n_args - 1, args + 1, &kw_args);

    // return object
    return dac;
}

STATIC mp_obj_t pyb_dac_init(mp_uint_t n_args, const mp_obj_t *args, mp_map_t *kw_args) {
    return pyb_dac_init_helper(args[0], n_args - 1, args + 1, kw_args);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_dac_init_obj, 1, pyb_dac_init);

/// \method deinit()
/// Turn off the DAC, enable other use of pin.
STATIC mp_obj_t pyb_dac_deinit(mp_obj_t self_in) {
    pyb_dac_obj_t *self = self_in;
    if (self->dac_channel == DAC_CHANNEL_1) {
        DAC_Handle.Instance->CR &= ~DAC_CR_EN1;
        DAC_Handle.Instance->CR |= DAC_CR_BOFF1;
    } else {
        DAC_Handle.Instance->CR &= ~DAC_CR_EN2;
        DAC_Handle.Instance->CR |= DAC_CR_BOFF2;
    }
    return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_dac_deinit_obj, pyb_dac_deinit);

#if defined(TIM6)
/// \method noise(freq)
/// Generate a pseudo-random noise signal.  A new random sample is written
/// to the DAC output at the given frequency.
STATIC mp_obj_t pyb_dac_noise(mp_obj_t self_in, mp_obj_t freq) {
    pyb_dac_obj_t *self = self_in;

    // set TIM6 to trigger the DAC at the given frequency
    TIM6_Config(mp_obj_get_int(freq));

    if (self->state != DAC_STATE_BUILTIN_WAVEFORM) {
        // configure DAC to trigger via TIM6
        DAC_ChannelConfTypeDef config;
        config.DAC_Trigger = DAC_TRIGGER_T6_TRGO;
        config.DAC_OutputBuffer = DAC_OUTPUTBUFFER_ENABLE;
        HAL_DAC_ConfigChannel(&DAC_Handle, &config, self->dac_channel);
        self->state = DAC_STATE_BUILTIN_WAVEFORM;
    }

    // set noise wave generation
    HAL_DACEx_NoiseWaveGenerate(&DAC_Handle, self->dac_channel, DAC_LFSRUNMASK_BITS10_0);
    HAL_DAC_SetValue(&DAC_Handle, self->dac_channel, DAC_ALIGN_12B_L, 0x7ff0);
    HAL_DAC_Start(&DAC_Handle, self->dac_channel);

    return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_dac_noise_obj, pyb_dac_noise);
#endif

#if defined(TIM6)
/// \method triangle(freq)
/// Generate a triangle wave.  The value on the DAC output changes at
/// the given frequency, and the frequence of the repeating triangle wave
/// itself is 256 (or 1024, need to check) times smaller.
STATIC mp_obj_t pyb_dac_triangle(mp_obj_t self_in, mp_obj_t freq) {
    pyb_dac_obj_t *self = self_in;

    // set TIM6 to trigger the DAC at the given frequency
    TIM6_Config(mp_obj_get_int(freq));

    if (self->state != DAC_STATE_BUILTIN_WAVEFORM) {
        // configure DAC to trigger via TIM6
        DAC_ChannelConfTypeDef config;
        config.DAC_Trigger = DAC_TRIGGER_T6_TRGO;
        config.DAC_OutputBuffer = DAC_OUTPUTBUFFER_ENABLE;
        HAL_DAC_ConfigChannel(&DAC_Handle, &config, self->dac_channel);
        self->state = DAC_STATE_BUILTIN_WAVEFORM;
    }

    // set triangle wave generation
    HAL_DACEx_TriangleWaveGenerate(&DAC_Handle, self->dac_channel, DAC_TRIANGLEAMPLITUDE_1023);
    HAL_DAC_SetValue(&DAC_Handle, self->dac_channel, DAC_ALIGN_12B_R, 0x100);
    HAL_DAC_Start(&DAC_Handle, self->dac_channel);

    return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_dac_triangle_obj, pyb_dac_triangle);
#endif

/// \method write(value)
/// Direct access to the DAC output (8 bit only at the moment).
STATIC mp_obj_t pyb_dac_write(mp_obj_t self_in, mp_obj_t val) {
    pyb_dac_obj_t *self = self_in;

    if (self->state != DAC_STATE_WRITE_SINGLE) {
        DAC_ChannelConfTypeDef config;
        config.DAC_Trigger = DAC_TRIGGER_NONE;
        config.DAC_OutputBuffer = DAC_OUTPUTBUFFER_DISABLE;
        HAL_DAC_ConfigChannel(&DAC_Handle, &config, self->dac_channel);
        self->state = DAC_STATE_WRITE_SINGLE;
    }

    // DAC output is always 12-bit at the hardware level, and we provide support
    // for multiple bit "resolutions" simply by shifting the input value.
    HAL_DAC_SetValue(&DAC_Handle, self->dac_channel, DAC_ALIGN_12B_R,
        mp_obj_get_int(val) << (12 - self->bits));

    HAL_DAC_Start(&DAC_Handle, self->dac_channel);

    return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_dac_write_obj, pyb_dac_write);

#if defined(TIM6)
/// \method write_timed(data, freq, *, mode=DAC.NORMAL)
/// Initiates a burst of RAM to DAC using a DMA transfer.
/// The input data is treated as an array of bytes (8 bit data).
///
/// `freq` can be an integer specifying the frequency to write the DAC
/// samples at, using Timer(6).  Or it can be an already-initialised
/// Timer object which is used to trigger the DAC sample.  Valid timers
/// are 2, 4, 5, 6, 7 and 8.
///
/// `mode` can be `DAC.NORMAL` or `DAC.CIRCULAR`.
///
// TODO add callback argument, to call when transfer is finished
// TODO add double buffer argument
//
// TODO reconsider API, eg: write_trig(data, *, trig=None, loop=False)
// Then trigger can be timer (preinitialised with desired freq) or pin (extint9),
// and we can reuse the same timer for both DACs (and maybe also ADC) without
// setting the freq twice.
// Can still do 1-liner: dac.write_trig(buf, trig=Timer(6, freq=100), loop=True)
mp_obj_t pyb_dac_write_timed(mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
    static const mp_arg_t allowed_args[] = {
        { MP_QSTR_data, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
        { MP_QSTR_freq, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
        { MP_QSTR_mode, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = DMA_NORMAL} },
    };

    // parse args
    pyb_dac_obj_t *self = pos_args[0];
    mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
    mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);

    // get the data to write
    mp_buffer_info_t bufinfo;
    mp_get_buffer_raise(args[0].u_obj, &bufinfo, MP_BUFFER_READ);

    uint32_t dac_trigger;
    if (mp_obj_is_integer(args[1].u_obj)) {
        // set TIM6 to trigger the DAC at the given frequency
        TIM6_Config(mp_obj_get_int(args[1].u_obj));
        dac_trigger = DAC_TRIGGER_T6_TRGO;
    } else {
        // set the supplied timer to trigger the DAC (timer should be initialised)
        dac_trigger = TIMx_Config(args[1].u_obj);
    }

    __DMA1_CLK_ENABLE();

    DMA_HandleTypeDef DMA_Handle;
    /* Get currently configured dma */
    dma_init_handle(&DMA_Handle, self->tx_dma_descr, (void*)NULL);
    /*
    DMA_Cmd(DMA_Handle->Instance, DISABLE);
    while (DMA_GetCmdStatus(DMA_Handle->Instance) != DISABLE) {
    }

    DAC_Cmd(self->dac_channel, DISABLE);
    */

    /*
    // DAC channel configuration
    DAC_InitTypeDef DAC_InitStructure;
    DAC_InitStructure.DAC_Trigger = DAC_Trigger_T7_TRGO;
    DAC_InitStructure.DAC_WaveGeneration = DAC_WaveGeneration_None;
    DAC_InitStructure.DAC_LFSRUnmask_TriangleAmplitude = DAC_TriangleAmplitude_1; // unused, but need to set it to a valid value
    DAC_InitStructure.DAC_OutputBuffer = DAC_OutputBuffer_Enable;
    DAC_Init(self->dac_channel, &DAC_InitStructure);
    */

    // Need to deinit DMA first
    DMA_Handle.State = HAL_DMA_STATE_READY;
    HAL_DMA_DeInit(&DMA_Handle);

    if (self->bits == 8) {
        DMA_Handle.Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE;
        DMA_Handle.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE;
    } else {
        DMA_Handle.Init.PeriphDataAlignment = DMA_PDATAALIGN_HALFWORD;
        DMA_Handle.Init.MemDataAlignment = DMA_MDATAALIGN_HALFWORD;
    }
    DMA_Handle.Init.Mode = args[2].u_int;
    HAL_DMA_Init(&DMA_Handle);

    if (self->dac_channel == DAC_CHANNEL_1) {
        __HAL_LINKDMA(&DAC_Handle, DMA_Handle1, DMA_Handle);
    } else {
        __HAL_LINKDMA(&DAC_Handle, DMA_Handle2, DMA_Handle);
    }

    DAC_Handle.Instance = DAC;
    DAC_Handle.State = HAL_DAC_STATE_RESET;
    HAL_DAC_Init(&DAC_Handle);

    if (self->state != DAC_STATE_DMA_WAVEFORM + dac_trigger) {
        DAC_ChannelConfTypeDef config;
        config.DAC_Trigger = dac_trigger;
        config.DAC_OutputBuffer = DAC_OUTPUTBUFFER_ENABLE;
        HAL_DAC_ConfigChannel(&DAC_Handle, &config, self->dac_channel);
        self->state = DAC_STATE_DMA_WAVEFORM + dac_trigger;
    }

    if (self->bits == 8) {
        HAL_DAC_Start_DMA(&DAC_Handle, self->dac_channel,
            (uint32_t*)bufinfo.buf, bufinfo.len, DAC_ALIGN_8B_R);
    } else {
        HAL_DAC_Start_DMA(&DAC_Handle, self->dac_channel,
            (uint32_t*)bufinfo.buf, bufinfo.len / 2, DAC_ALIGN_12B_R);
    }

    /*
    // enable DMA stream
    DMA_Cmd(DMA_Handle->Instance, ENABLE);
    while (DMA_GetCmdStatus(DMA_Handle->Instance) == DISABLE) {
    }

    // enable DAC channel
    DAC_Cmd(self->dac_channel, ENABLE);

    // enable DMA for DAC channel
    DAC_DMACmd(self->dac_channel, ENABLE);
    */

    //printf("DMA: %p %lu\n", bufinfo.buf, bufinfo.len);

    return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_dac_write_timed_obj, 1, pyb_dac_write_timed);
#endif

STATIC const mp_rom_map_elem_t pyb_dac_locals_dict_table[] = {
    // instance methods
    { MP_ROM_QSTR(MP_QSTR_init), MP_ROM_PTR(&pyb_dac_init_obj) },
    { MP_ROM_QSTR(MP_QSTR_deinit), MP_ROM_PTR(&pyb_dac_deinit_obj) },
    { MP_ROM_QSTR(MP_QSTR_write), MP_ROM_PTR(&pyb_dac_write_obj) },
    #if defined(TIM6)
    { MP_ROM_QSTR(MP_QSTR_noise), MP_ROM_PTR(&pyb_dac_noise_obj) },
    { MP_ROM_QSTR(MP_QSTR_triangle), MP_ROM_PTR(&pyb_dac_triangle_obj) },
    { MP_ROM_QSTR(MP_QSTR_write_timed), MP_ROM_PTR(&pyb_dac_write_timed_obj) },
    #endif

    // class constants
    { MP_ROM_QSTR(MP_QSTR_NORMAL), MP_ROM_INT(DMA_NORMAL) },
    { MP_ROM_QSTR(MP_QSTR_CIRCULAR), MP_ROM_INT(DMA_CIRCULAR) },
};

STATIC MP_DEFINE_CONST_DICT(pyb_dac_locals_dict, pyb_dac_locals_dict_table);

const mp_obj_type_t pyb_dac_type = {
    { &mp_type_type },
    .name = MP_QSTR_DAC,
    .make_new = pyb_dac_make_new,
    .locals_dict = (mp_obj_dict_t*)&pyb_dac_locals_dict,
};

#endif // MICROPY_HW_ENABLE_DAC