CircuitPython

Source code browser

Note: This site will be taken down by the end of the year

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
/*
 * This file is part of the MicroPython project, http://micropython.org/
 *
 * The MIT License (MIT)
 *
 * Copyright (c) 2016 Scott Shawcroft for Adafruit Industries
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

#include <stdint.h>
#include <string.h>

#include "genhdr/mpversion.h"
#include "py/nlr.h"
#include "py/compile.h"
#include "py/frozenmod.h"
#include "py/mphal.h"
#include "py/runtime.h"
#include "py/repl.h"
#include "py/gc.h"
#include "py/stackctrl.h"

#include "extmod/vfs_fat.h"
#include "lib/oofatfs/ff.h"
#include "lib/oofatfs/diskio.h"
#include "lib/mp-readline/readline.h"
#include "lib/utils/pyexec.h"

#include "asf/common/services/sleepmgr/sleepmgr.h"
#include "asf/common/services/usb/udc/udc.h"
#include "asf/common2/services/delay/delay.h"
#include "asf/sam0/drivers/nvm/nvm.h"
#include "asf/sam0/drivers/port/port.h"
#include "asf/sam0/drivers/sercom/usart/usart.h"
#include "asf/sam0/drivers/system/system.h"
#include <board.h>

#include "boards/board.h"

#include "common-hal/analogio/AnalogIn.h"
#include "common-hal/audioio/AudioOut.h"
#include "common-hal/audiobusio/PDMIn.h"
#include "common-hal/pulseio/PulseIn.h"
#include "common-hal/pulseio/PulseOut.h"
#include "common-hal/pulseio/PWMOut.h"
#include "common-hal/touchio/TouchIn.h"
#include "common-hal/usb_hid/__init__.h"
#include "shared-module/gamepad/__init__.h"

#include "autoreload.h"
#include "flash_api.h"
#include "mpconfigboard.h"
#include "rgb_led_status.h"
#include "shared_dma.h"
#include "tick.h"

#ifdef EXPRESS_BOARD
#define INTERNAL_CIRCUITPY_CONFIG_START_ADDR (0x00040000 - 0x100 - CIRCUITPY_INTERNAL_NVM_SIZE)
#else
#define INTERNAL_CIRCUITPY_CONFIG_START_ADDR (0x00040000 - 0x010000 - 0x100 - CIRCUITPY_INTERNAL_NVM_SIZE)
#endif

fs_user_mount_t fs_user_mount_flash;
mp_vfs_mount_t mp_vfs_mount_flash;

typedef enum {
    NO_SAFE_MODE = 0,
    BROWNOUT,
    HARD_CRASH,
    USER_SAFE_MODE,
    SOFTWARE_SAFE_MODE
} safe_mode_t;

void do_str(const char *src, mp_parse_input_kind_t input_kind) {
    mp_lexer_t *lex = mp_lexer_new_from_str_len(MP_QSTR__lt_stdin_gt_, src, strlen(src), 0);
    if (lex == NULL) {
        printf("MemoryError: lexer could not allocate memory\n");
        return;
    }

    nlr_buf_t nlr;
    if (nlr_push(&nlr) == 0) {
        qstr source_name = lex->source_name;
        mp_parse_tree_t parse_tree = mp_parse(lex, input_kind);
        mp_obj_t module_fun = mp_compile(&parse_tree, source_name, MP_EMIT_OPT_NONE, true);
        mp_call_function_0(module_fun);
        nlr_pop();
    } else {
        // uncaught exception
        mp_obj_print_exception(&mp_plat_print, (mp_obj_t)nlr.ret_val);
    }
}

// we don't make this function static because it needs a lot of stack and we
// want it to be executed without using stack within main() function
void init_flash_fs(bool create_allowed) {
    // init the vfs object
    fs_user_mount_t *vfs_fat = &fs_user_mount_flash;
    vfs_fat->flags = 0;
    flash_init_vfs(vfs_fat);

    // try to mount the flash
    FRESULT res = f_mount(&vfs_fat->fatfs);

    if (res == FR_NO_FILESYSTEM && create_allowed) {
        // no filesystem so create a fresh one

        // Wait two seconds before creating. Jittery power might
        // fail before we're ready. This can happen if someone
        // is bobbling a bit when plugging in a battery.
        mp_hal_delay_ms(2000);

        // Then try one more time to mount the flash in case it was late coming up.
        res = f_mount(&vfs_fat->fatfs);
        if (res == FR_NO_FILESYSTEM) {
            uint8_t working_buf[_MAX_SS];
            res = f_mkfs(&vfs_fat->fatfs, FM_FAT, 0, working_buf, sizeof(working_buf));
            // Flush the new file system to make sure its repaired immediately.
            flash_flush();
            if (res != FR_OK) {
                return;
            }

            // set label
            f_setlabel(&vfs_fat->fatfs, "CIRCUITPY");
        }
    } else if (res != FR_OK) {
        return;
    }
    mp_vfs_mount_t *vfs = &mp_vfs_mount_flash;
    vfs->str = "/";
    vfs->len = 1;
    vfs->obj = MP_OBJ_FROM_PTR(vfs_fat);
    vfs->next = NULL;
    MP_STATE_VM(vfs_mount_table) = vfs;

    // The current directory is used as the boot up directory.
    // It is set to the internal flash filesystem by default.
    MP_STATE_PORT(vfs_cur) = vfs;
}

static char heap[16384 + 4096];

void reset_mp(void) {
    reset_status_led();
    new_status_color(0x8f008f);
    autoreload_stop();

    // Sync the file systems in case any used RAM from the GC to cache. As soon
    // as we re-init the GC all bets are off on the cache.
    flash_flush();

    // Clear the readline history. It references the heap we're about to destroy.
    readline_init0();

    #if MICROPY_ENABLE_GC
    gc_init(heap, heap + sizeof(heap));
    #endif
    mp_init();
    mp_obj_list_init(mp_sys_path, 0);
    mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR_)); // current dir (or base dir of the script)
    mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR__slash_));
    mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR__slash_lib));
    // Frozen modules are in their own pseudo-dir, e.g., ".frozen".
    mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_FROZEN_FAKE_DIR_QSTR));

    mp_obj_list_init(mp_sys_argv, 0);
}

extern volatile bool mp_msc_enabled;

void reset_samd21(void) {
    // Reset all SERCOMs except the one being used by the SPI flash.
    Sercom *sercom_instances[SERCOM_INST_NUM] = SERCOM_INSTS;
    for (int i = 0; i < SERCOM_INST_NUM; i++) {
        #ifdef SPI_FLASH_SERCOM
            if (sercom_instances[i] == SPI_FLASH_SERCOM) {
                continue;
            }
        #endif
        #ifdef MICROPY_HW_APA102_SERCOM
            if (sercom_instances[i] == MICROPY_HW_APA102_SERCOM) {
                continue;
            }
        #endif
        sercom_instances[i]->SPI.CTRLA.bit.SWRST = 1;
    }

#ifdef EXPRESS_BOARD
    audioout_reset();
#endif

    touchin_reset();
    pdmin_reset();
    pulsein_reset();
    pulseout_reset();
    pwmout_reset();
    analogin_reset();

#ifdef CIRCUITPY_GAMEPAD_TICKS
    gamepad_reset();
#endif

    // TODO: move this to analogout_reset()
    // Wait for the DAC to sync then reset.
    while (DAC->STATUS.reg & DAC_STATUS_SYNCBUSY) {}
    DAC->CTRLA.reg |= DAC_CTRLA_SWRST;

    reset_all_pins();


    usb_hid_reset();

#ifdef CALIBRATE_CRYSTALLESS
    // If we are on USB lets double check our fine calibration for the clock and
    // save the new value if its different enough.
    if (mp_msc_enabled) {
        SYSCTRL->DFLLSYNC.bit.READREQ = 1;
        uint16_t saved_calibration = 0x1ff;
        if (strcmp((char*) INTERNAL_CIRCUITPY_CONFIG_START_ADDR, "CIRCUITPYTHON1") == 0) {
            saved_calibration = ((uint16_t *) INTERNAL_CIRCUITPY_CONFIG_START_ADDR)[8];
        }
        while (SYSCTRL->PCLKSR.bit.DFLLRDY == 0) {
            // TODO(tannewt): Run the mass storage stuff if this takes a while.
        }
        int16_t current_calibration = SYSCTRL->DFLLVAL.bit.FINE;
        if (abs(current_calibration - saved_calibration) > 10) {
            enum status_code error_code;
            uint8_t page_buffer[NVMCTRL_ROW_SIZE];
            for (int i = 0; i < NVMCTRL_ROW_PAGES; i++) {
                do
                {
                    error_code = nvm_read_buffer(INTERNAL_CIRCUITPY_CONFIG_START_ADDR + i * NVMCTRL_PAGE_SIZE,
                                                 page_buffer + i * NVMCTRL_PAGE_SIZE,
                                                 NVMCTRL_PAGE_SIZE);
                } while (error_code == STATUS_BUSY);
            }
            // If this is the first write, include the header.
            if (strcmp((char*) page_buffer, "CIRCUITPYTHON1") != 0) {
                memcpy(page_buffer, "CIRCUITPYTHON1", 15);
            }
            // First 16 bytes (0-15) are ID. Little endian!
            page_buffer[16] = current_calibration & 0xff;
            page_buffer[17] = current_calibration >> 8;
            do
            {
                error_code = nvm_erase_row(INTERNAL_CIRCUITPY_CONFIG_START_ADDR);
            } while (error_code == STATUS_BUSY);
            for (int i = 0; i < NVMCTRL_ROW_PAGES; i++) {
                do
                {
                    error_code = nvm_write_buffer(INTERNAL_CIRCUITPY_CONFIG_START_ADDR + i * NVMCTRL_PAGE_SIZE,
                                                  page_buffer + i * NVMCTRL_PAGE_SIZE,
                                                  NVMCTRL_PAGE_SIZE);
                } while (error_code == STATUS_BUSY);
            }
        }
    }
#endif
}

bool maybe_run(const char* filename, pyexec_result_t* exec_result) {
    mp_import_stat_t stat = mp_import_stat(filename);
    if (stat != MP_IMPORT_STAT_FILE) {
        return false;
    }
    mp_hal_stdout_tx_str(filename);
    mp_hal_stdout_tx_str(" output:\r\n");
    pyexec_file(filename, exec_result);
    return true;
}

bool start_mp(safe_mode_t safe_mode) {
    bool cdc_enabled_at_start = mp_cdc_enabled;
    #ifdef CIRCUITPY_AUTORELOAD_DELAY_MS
    if (cdc_enabled_at_start) {
        mp_hal_stdout_tx_str("\r\n");
        if (autoreload_is_enabled()) {
            mp_hal_stdout_tx_str("Auto-reload is on. Simply save files over USB to run them or enter REPL to disable.\r\n");
        } else if (safe_mode != NO_SAFE_MODE) {
            mp_hal_stdout_tx_str("Running in safe mode! Auto-reload is off.\r\n");
        } else if (!autoreload_is_enabled()) {
            mp_hal_stdout_tx_str("Auto-reload is off.\r\n");
        }
    }
    #endif

    pyexec_result_t result;
    bool found_main = false;
    if (safe_mode != NO_SAFE_MODE) {
        mp_hal_stdout_tx_str("Running in safe mode! Not running saved code.\r\n");
    } else {
        new_status_color(MAIN_RUNNING);
        found_main = maybe_run("code.txt", &result) ||
                     maybe_run("code.py", &result) ||
                     maybe_run("main.py", &result) ||
                     maybe_run("main.txt", &result);
        reset_status_led();

        if (result.return_code & PYEXEC_FORCED_EXIT) {
            return reload_next_character;
        }

        // If not is USB mode then do not skip the repl.
        #ifndef USB_REPL
        return false;
        #endif
    }

    // Wait for connection or character.
    bool cdc_enabled_before = false;
    #if defined(MICROPY_HW_NEOPIXEL) || (defined(MICROPY_HW_APA102_MOSI) && defined(MICROPY_HW_APA102_SCK))
    new_status_color(ALL_DONE);
    uint32_t pattern_start = ticks_ms;

    uint32_t total_exception_cycle = 0;
    uint8_t ones = result.exception_line % 10;
    ones += ones > 0 ? 1 : 0;
    uint8_t tens = (result.exception_line / 10) % 10;
    tens += tens > 0 ? 1 : 0;
    uint8_t hundreds = (result.exception_line / 100) % 10;
    hundreds += hundreds > 0 ? 1 : 0;
    uint8_t thousands = (result.exception_line / 1000) % 10;
    thousands += thousands > 0 ? 1 : 0;
    uint8_t digit_sum = ones + tens + hundreds + thousands;
    uint8_t num_places = 0;
    uint16_t line = result.exception_line;
    for (int i = 0; i < 4; i++) {
        if ((line % 10) > 0) {
            num_places++;
        }
        line /= 10;
    }
    if (result.return_code == PYEXEC_EXCEPTION) {
        total_exception_cycle = EXCEPTION_TYPE_LENGTH_MS * 3 + LINE_NUMBER_TOGGLE_LENGTH * digit_sum + LINE_NUMBER_TOGGLE_LENGTH * num_places;
    }
    #endif
    while (true) {
        #ifdef MICROPY_VM_HOOK_LOOP
            MICROPY_VM_HOOK_LOOP
        #endif
        if (reload_next_character) {
            return true;
        }
        if (usb_rx_count > 0) {
            // Skip REPL if reload was requested.
            return receive_usb() == CHAR_CTRL_D;
        }

        if (!cdc_enabled_before && mp_cdc_enabled) {
            if (cdc_enabled_at_start) {
                mp_hal_stdout_tx_str("\r\n\r\n");
            }

            if (!cdc_enabled_at_start) {
                if (autoreload_is_enabled()) {
                    mp_hal_stdout_tx_str("Auto-reload is on. Simply save files over USB to run them or enter REPL to disable.\r\n");
                } else {
                    mp_hal_stdout_tx_str("Auto-reload is off.\r\n");
                }
            }
            // Output a user safe mode string if its set.
            #ifdef BOARD_USER_SAFE_MODE
            if (safe_mode == USER_SAFE_MODE) {
                mp_hal_stdout_tx_str("\r\nYou requested starting safe mode by ");
                mp_hal_stdout_tx_str(BOARD_USER_SAFE_MODE);
                mp_hal_stdout_tx_str(".\r\nTo exit, please reset the board without ");
                mp_hal_stdout_tx_str(BOARD_USER_SAFE_MODE);
                mp_hal_stdout_tx_str(".\r\n");
            } else
            #endif
            if (safe_mode == SOFTWARE_SAFE_MODE) {
                mp_hal_stdout_tx_str("\r\nYou requested starting in safe mode from your software.");
                mp_hal_stdout_tx_str(".\r\nTo exit, please reset the board.\r\n");
            } else if (safe_mode != NO_SAFE_MODE) {
                mp_hal_stdout_tx_str("\r\nYou are running in safe mode which means something really bad happened.\r\n");
                if (safe_mode == HARD_CRASH) {
                    mp_hal_stdout_tx_str("Looks like our core CircuitPython code crashed hard. Whoops!\r\n");
                    mp_hal_stdout_tx_str("Please file an issue here with the contents of your CIRCUITPY drive:\r\n");
                    mp_hal_stdout_tx_str("https://github.com/adafruit/circuitpython/issues\r\n");
                } else if (safe_mode == BROWNOUT) {
                    mp_hal_stdout_tx_str("The microcontroller's power dipped. Please make sure your power supply provides \r\n");
                    mp_hal_stdout_tx_str("enough power for the whole circuit and press reset (after ejecting CIRCUITPY).\r\n");
                }
            }
            mp_hal_stdout_tx_str("\r\nPress any key to enter the REPL. Use CTRL-D to reload.\r\n");
        }
        if (cdc_enabled_before && !mp_cdc_enabled) {
            cdc_enabled_at_start = false;
        }
        cdc_enabled_before = mp_cdc_enabled;

        #if defined(MICROPY_HW_NEOPIXEL) || (defined(MICROPY_HW_APA102_MOSI) && defined(MICROPY_HW_APA102_SCK))
        uint32_t tick_diff = ticks_ms - pattern_start;
        if (result.return_code != PYEXEC_EXCEPTION) {
            // All is good. Ramp ALL_DONE up and down.
            if (tick_diff > ALL_GOOD_CYCLE_MS) {
                pattern_start = ticks_ms;
                tick_diff = 0;
            }

            uint16_t brightness = tick_diff * 255 / (ALL_GOOD_CYCLE_MS / 2);
            if (brightness > 255) {
                brightness = 511 - brightness;
            }
            if (safe_mode == NO_SAFE_MODE) {
                new_status_color(color_brightness(ALL_DONE, brightness));
            } else {
                new_status_color(color_brightness(SAFE_MODE, brightness));
            }
        } else {
            if (tick_diff > total_exception_cycle) {
                pattern_start = ticks_ms;
                tick_diff = 0;
            }
            // First flash the file color.
            if (tick_diff < EXCEPTION_TYPE_LENGTH_MS) {
                if (found_main) {
                    new_status_color(MAIN_RUNNING);
                } else {
                    new_status_color(BOOT_RUNNING);
                }
            // Next flash the exception color.
            } else if (tick_diff < EXCEPTION_TYPE_LENGTH_MS * 2) {
                if (mp_obj_is_subclass_fast(result.exception_type, &mp_type_IndentationError)) {
                    new_status_color(INDENTATION_ERROR);
                } else if (mp_obj_is_subclass_fast(result.exception_type, &mp_type_SyntaxError)) {
                    new_status_color(SYNTAX_ERROR);
                } else if (mp_obj_is_subclass_fast(result.exception_type, &mp_type_NameError)) {
                    new_status_color(NAME_ERROR);
                } else if (mp_obj_is_subclass_fast(result.exception_type, &mp_type_OSError)) {
                    new_status_color(OS_ERROR);
                } else if (mp_obj_is_subclass_fast(result.exception_type, &mp_type_ValueError)) {
                    new_status_color(VALUE_ERROR);
                } else {
                    new_status_color(OTHER_ERROR);
                }
            // Finally flash the line number digits from highest to lowest.
            // Zeroes will not produce a flash but can be read by the absence of
            // a color from the sequence.
            } else if (tick_diff < (EXCEPTION_TYPE_LENGTH_MS * 2 + LINE_NUMBER_TOGGLE_LENGTH * digit_sum)) {
                uint32_t digit_diff = tick_diff - EXCEPTION_TYPE_LENGTH_MS * 2;
                if ((digit_diff % LINE_NUMBER_TOGGLE_LENGTH) < (LINE_NUMBER_TOGGLE_LENGTH / 2)) {
                    new_status_color(BLACK);
                } else if (digit_diff < LINE_NUMBER_TOGGLE_LENGTH * thousands) {
                    if (digit_diff < LINE_NUMBER_TOGGLE_LENGTH) {
                        new_status_color(BLACK);
                    } else {
                        new_status_color(THOUSANDS);
                    }
                } else if (digit_diff < LINE_NUMBER_TOGGLE_LENGTH * (thousands + hundreds)) {
                    if (digit_diff < LINE_NUMBER_TOGGLE_LENGTH * (thousands + 1)) {
                        new_status_color(BLACK);
                    } else {
                        new_status_color(HUNDREDS);
                    }
                } else if (digit_diff < LINE_NUMBER_TOGGLE_LENGTH * (thousands + hundreds + tens)) {
                    if (digit_diff < LINE_NUMBER_TOGGLE_LENGTH * (thousands + hundreds + 1)) {
                        new_status_color(BLACK);
                    } else {
                        new_status_color(TENS);
                    }
                } else {
                    if (digit_diff < LINE_NUMBER_TOGGLE_LENGTH * (thousands + hundreds + tens + 1)) {
                        new_status_color(BLACK);
                    } else {
                        new_status_color(ONES);
                    }
                }
            } else {
                new_status_color(BLACK);
            }
        }
        #else
        (void) found_main; // Pretend to use found_main so the compiler doesn't complain.
        #endif
    }
}

#ifdef UART_REPL
struct usart_module usart_instance;
#endif

#ifdef ENABLE_MICRO_TRACE_BUFFER
// Stores 2 ^ TRACE_BUFFER_MAGNITUDE_PACKETS packets.
// 7 -> 128 packets
#define TRACE_BUFFER_MAGNITUDE_PACKETS 7
// Size in uint32_t. Two per packet.
#define TRACE_BUFFER_SIZE (1 << (TRACE_BUFFER_MAGNITUDE_PACKETS + 1))
// Size in bytes. 4 bytes per uint32_t.
#define TRACE_BUFFER_SIZE_BYTES (TRACE_BUFFER_SIZE << 2)
__attribute__((__aligned__(TRACE_BUFFER_SIZE_BYTES))) uint32_t mtb[TRACE_BUFFER_SIZE];
#endif

// Serial number as hex characters.
char serial_number[USB_DEVICE_GET_SERIAL_NAME_LENGTH];
void load_serial_number(void) {
    char nibble_to_hex[16] = {'0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A',
        'B', 'C', 'D', 'E', 'F'};
    uint32_t* addresses[4] = {(uint32_t *) 0x0080A00C, (uint32_t *) 0x0080A040,
                              (uint32_t *) 0x0080A044, (uint32_t *) 0x0080A048};
    for (int i = 0; i < 4; i++) {
        for (int j = 0; j < 8; j++) {
            uint8_t nibble = (*(addresses[i]) >> j * 4) & 0xf;
            serial_number[i * 8 + j] = nibble_to_hex[nibble];
        }
    }
}

// Provided by the linker;
extern uint32_t _ezero;

safe_mode_t samd21_init(void) {
#ifdef ENABLE_MICRO_TRACE_BUFFER
    REG_MTB_POSITION = ((uint32_t) (mtb - REG_MTB_BASE)) & 0xFFFFFFF8;
    REG_MTB_FLOW = (((uint32_t) mtb - REG_MTB_BASE) + TRACE_BUFFER_SIZE_BYTES) & 0xFFFFFFF8;
    REG_MTB_MASTER = 0x80000000 + (TRACE_BUFFER_MAGNITUDE_PACKETS - 1);
#else
    // Triple check that the MTB is off. Switching between debug and non-debug
    // builds can leave it set over reset and wreak havok as a result.
    REG_MTB_MASTER = 0x00000000 + 6;
#endif

    // CIRCUITPY_SOFTWARE_SAFE_MODE works just like the canary except if it
    // survives we enter safe mode with a friendlier message.
    bool software_safe_mode = _ezero == CIRCUITPY_SOFTWARE_SAFE_MODE;

// On power on start or external reset, set _ezero to the canary word. If it
// gets killed, we boot in safe mode. _ezero is the boundary between statically
// allocated memory including the fixed MicroPython heap and the stack. If
// either misbehaves, the canary will not be intact after soft reset.
#ifdef CIRCUITPY_CANARY_WORD
    if (PM->RCAUSE.bit.POR == 1 || PM->RCAUSE.bit.EXT == 1) {
        _ezero = CIRCUITPY_CANARY_WORD;
    } else if (PM->RCAUSE.bit.SYST == 1) {
        // If we're starting from a system reset we're likely coming from the
        // bootloader or hard fault handler. If we're coming from the handler
        // the canary will be CIRCUITPY_SAFE_RESTART_WORD and we don't want to
        // revive the canary so that a second hard fault won't restart. Resets
        // from anywhere else are ok.
        if (_ezero == CIRCUITPY_SAFE_RESTART_WORD) {
            _ezero = ~CIRCUITPY_CANARY_WORD;
        } else {
            _ezero = CIRCUITPY_CANARY_WORD;
        }
    }
#endif

    load_serial_number();

    irq_initialize_vectors();
    cpu_irq_enable();

    // Initialize the sleep manager
    sleepmgr_init();

    uint16_t dfll_fine_calibration = 0x1ff;
#ifdef CALIBRATE_CRYSTALLESS
    // This is stored in an NVM page after the text and data storage but before
    // the optional file system. The first 16 bytes are the identifier for the
    // section.
    if (strcmp((char*) INTERNAL_CIRCUITPY_CONFIG_START_ADDR, "CIRCUITPYTHON1") == 0) {
        dfll_fine_calibration = ((uint16_t *) INTERNAL_CIRCUITPY_CONFIG_START_ADDR)[8];
    }
#endif

    // We pass in the DFLL fine calibration because we can't change it once the
    // clock is going.
    system_init(dfll_fine_calibration);

    delay_init();

    board_init();

    // Configure millisecond timer initialization.
    tick_init();

    // Uncomment to init PIN_PA17 for debugging.
    // struct port_config pin_conf;
    // port_get_config_defaults(&pin_conf);
    //
    // pin_conf.direction  = PORT_PIN_DIR_OUTPUT;
    // port_pin_set_config(MICROPY_HW_LED1, &pin_conf);
    // port_pin_set_output_level(MICROPY_HW_LED1, false);

    rgb_led_status_init();

    // Init the nvm controller.
    struct nvm_config config_nvm;
    nvm_get_config_defaults(&config_nvm);
    config_nvm.manual_page_write = false;
    nvm_set_config(&config_nvm);

    init_shared_dma();

    #ifdef CIRCUITPY_CANARY_WORD
    // Run in safe mode if the canary is corrupt.
    if (_ezero != CIRCUITPY_CANARY_WORD) {
        return HARD_CRASH;
    }
    #endif

    if (PM->RCAUSE.bit.BOD33 == 1 || PM->RCAUSE.bit.BOD12 == 1) {
        return BROWNOUT;
    }

    if (board_requests_safe_mode()) {
        return USER_SAFE_MODE;
    }

    if (software_safe_mode) {
        return SOFTWARE_SAFE_MODE;
    }

    #if CIRCUITPY_INTERNAL_NVM_SIZE > 0
    // Upgrade the nvm flash to include one sector for eeprom emulation.
    struct nvm_fusebits fuses;
    if (nvm_get_fuses(&fuses) == STATUS_OK &&
            fuses.eeprom_size == NVM_EEPROM_EMULATOR_SIZE_0) {
        #ifdef INTERNAL_FLASH_FS
        // Shift the internal file system up one row.
        for (uint8_t row = 0; row < TOTAL_INTERNAL_FLASH_SIZE / NVMCTRL_ROW_SIZE; row++) {
            uint32_t new_row_address = INTERNAL_FLASH_MEM_SEG1_START_ADDR + row * NVMCTRL_ROW_SIZE;
            nvm_erase_row(new_row_address);
            nvm_write_buffer(new_row_address,
                             (uint8_t*) (new_row_address + CIRCUITPY_INTERNAL_EEPROM_SIZE),
                             NVMCTRL_ROW_SIZE);
        }
        #endif
        uint32_t nvm_size = CIRCUITPY_INTERNAL_NVM_SIZE;
        uint8_t enum_value = 6;
        while (nvm_size > 256 && enum_value != 255) {
            nvm_size /= 2;
            enum_value -= 1;
        }
        if (enum_value != 255 && nvm_size == 256) {
            // Mark the last section as eeprom now.
            fuses.eeprom_size = (enum nvm_eeprom_emulator_size) enum_value;
            nvm_set_fuses(&fuses);
        }
    }
    #endif

    return NO_SAFE_MODE;
}

extern uint32_t _estack;
extern uint32_t _ebss;

int main(void) {
    // initialise the cpu and peripherals
    safe_mode_t safe_mode = samd21_init();

    // Stack limit should be less than real stack size, so we have a chance
    // to recover from limit hit.  (Limit is measured in bytes.)
    mp_stack_ctrl_init();
    mp_stack_set_limit((char*)&_estack - (char*)&_ebss - 1024);


#if MICROPY_MAX_STACK_USAGE
    // _ezero (same as _ebss) is an int, so start 4 bytes above it.
    mp_stack_set_bottom(&_ezero + 1);
    mp_stack_fill_with_sentinel();
#endif

    // Create a new filesystem only if we're not in a safe mode.
    // A power brownout here could make it appear as if there's
    // no SPI flash filesystem, and we might erase the existing one.
    init_flash_fs(safe_mode == NO_SAFE_MODE);

    // Reset everything and prep MicroPython to run boot.py.
    reset_samd21();
    reset_board();
    reset_mp();

    // Turn on autoreload by default but before boot.py in case it wants to change it.
    autoreload_enable();

    // By default our internal flash is readonly to local python code and
    // writeable over USB. Set it here so that boot.py can change it.
    flash_set_usb_writeable(true);

    // If not in safe mode, run boot before initing USB and capture output in a
    // file.
    if (safe_mode == NO_SAFE_MODE && MP_STATE_VM(vfs_mount_table) != NULL) {
        new_status_color(BOOT_RUNNING);
        #ifdef CIRCUITPY_BOOT_OUTPUT_FILE
        // Since USB isn't up yet we can cheat and let ourselves write the boot
        // output file.
        flash_set_usb_writeable(false);
        FIL file_pointer;
        boot_output_file = &file_pointer;
        f_open(&((fs_user_mount_t *) MP_STATE_VM(vfs_mount_table)->obj)->fatfs,
            boot_output_file, CIRCUITPY_BOOT_OUTPUT_FILE, FA_WRITE | FA_CREATE_ALWAYS);
        flash_set_usb_writeable(true);
        // Write version info to boot_out.txt.
        mp_hal_stdout_tx_str(MICROPY_FULL_VERSION_INFO);
        mp_hal_stdout_tx_str("\r\n");
        #endif

        // TODO(tannewt): Re-add support for flashing boot error output.
        bool found_boot = maybe_run("settings.txt", NULL) ||
                          maybe_run("settings.py", NULL) ||
                          maybe_run("boot.py", NULL) ||
                          maybe_run("boot.txt", NULL);
        (void) found_boot;

        #ifdef CIRCUITPY_BOOT_OUTPUT_FILE
        f_close(boot_output_file);
        flash_flush();
        boot_output_file = NULL;
        #endif

        // Reset to remove any state that boot.py setup. It should only be used to
        // change internal state thats not in the heap.
        reset_samd21();
        reset_mp();
    }

    usb_hid_init();

    // Start USB after getting everything going.
    #ifdef USB_REPL
        udc_start();
    #endif

    // Boot script is finished, so now go into REPL/main mode.
    int exit_code = PYEXEC_FORCED_EXIT;
    bool skip_repl = true;
    bool first_run = true;
    for (;;) {
        if (!skip_repl) {
            // The REPL mode can change, or it can request a reload.
            bool autoreload_on = autoreload_is_enabled();
            autoreload_disable();
            new_status_color(REPL_RUNNING);
            if (pyexec_mode_kind == PYEXEC_MODE_RAW_REPL) {
                exit_code = pyexec_raw_repl();
            } else {
                exit_code = pyexec_friendly_repl();
            }
            if (autoreload_on) {
                autoreload_enable();
            }
            reset_samd21();
            reset_board();
            reset_mp();
        }
        if (exit_code == PYEXEC_FORCED_EXIT) {
            if (!first_run) {
                mp_hal_stdout_tx_str("soft reboot\r\n");
            }
            first_run = false;
            skip_repl = start_mp(safe_mode);
            reset_samd21();
            reset_board();
            reset_mp();
        } else if (exit_code != 0) {
            break;
        }
    }
    mp_deinit();
    return 0;
}

void gc_collect(void) {
    // WARNING: This gc_collect implementation doesn't try to get root
    // pointers from CPU registers, and thus may function incorrectly.
    void *dummy;
    gc_collect_start();
    // This collects root pointers from the VFS mount table. Some of them may
    // have lost their references in the VM even though they are mounted.
    gc_collect_root((void**)&MP_STATE_VM(vfs_mount_table), sizeof(mp_vfs_mount_t) / sizeof(mp_uint_t));
    // This naively collects all object references from an approximate stack
    // range.
    gc_collect_root(&dummy, ((mp_uint_t)&_estack - (mp_uint_t)&dummy) / sizeof(mp_uint_t));
    gc_collect_end();
}

void NORETURN nlr_jump_fail(void *val) {
    HardFault_Handler();
    while (true) {}
}

void NORETURN __fatal_error(const char *msg) {
    HardFault_Handler();
    while (true) {}
}

#ifndef NDEBUG
void MP_WEAK __assert_func(const char *file, int line, const char *func, const char *expr) {
    printf("Assertion '%s' failed, at file %s:%d\n", expr, file, line);
    __fatal_error("Assertion failed");
}
#endif