CircuitPython

Source code browser

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
/*
 * This file is part of the MicroPython project, http://micropython.org/
 *
 * The MIT License (MIT)
 *
 * Copyright (c) 2013, 2014 Damien P. George
 * Copyright (c) 2015 Daniel Campora
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

#include "py/mpconfig.h"
#include "py/obj.h"
#include "py/runtime.h"
#include "py/mperrno.h"
#include "lib/timeutils/timeutils.h"
#include "inc/hw_types.h"
#include "inc/hw_ints.h"
#include "inc/hw_memmap.h"
#include "rom_map.h"
#include "prcm.h"
#include "pybrtc.h"
#include "mpirq.h"
#include "pybsleep.h"
#include "simplelink.h"
#include "modnetwork.h"
#include "modwlan.h"
#include "mpexception.h"

/// \moduleref pyb
/// \class RTC - real time clock

/******************************************************************************
 DECLARE PRIVATE DATA
 ******************************************************************************/
STATIC const mp_irq_methods_t pyb_rtc_irq_methods;
STATIC pyb_rtc_obj_t pyb_rtc_obj;

/******************************************************************************
 FUNCTION-LIKE MACROS
 ******************************************************************************/
#define RTC_U16MS_CYCLES(msec)          ((msec   * 1024) / 1000)
#define RTC_CYCLES_U16MS(cycles)        ((cycles * 1000) / 1024)

/******************************************************************************
 DECLARE PRIVATE FUNCTIONS
 ******************************************************************************/
STATIC void pyb_rtc_set_time (uint32_t secs, uint16_t msecs);
STATIC uint32_t pyb_rtc_reset (void);
STATIC void pyb_rtc_disable_interupt (void);
STATIC void pyb_rtc_irq_enable (mp_obj_t self_in);
STATIC void pyb_rtc_irq_disable (mp_obj_t self_in);
STATIC int pyb_rtc_irq_flags (mp_obj_t self_in);
STATIC uint pyb_rtc_datetime_s_us(const mp_obj_t datetime, uint32_t *seconds);
STATIC mp_obj_t pyb_rtc_datetime(mp_obj_t self, const mp_obj_t datetime);
STATIC void pyb_rtc_set_alarm (pyb_rtc_obj_t *self, uint32_t seconds, uint16_t mseconds);
STATIC void rtc_msec_add(uint16_t msecs_1, uint32_t *secs, uint16_t *msecs_2);

/******************************************************************************
 DECLARE PUBLIC FUNCTIONS
 ******************************************************************************/
__attribute__ ((section (".boot")))
void pyb_rtc_pre_init(void) {
    // only if comming out of a power-on reset
    if (MAP_PRCMSysResetCauseGet() == PRCM_POWER_ON) {
        // Mark the RTC in use first
        MAP_PRCMRTCInUseSet();
        // reset the time and date
        pyb_rtc_reset();
    }
}

void pyb_rtc_get_time (uint32_t *secs, uint16_t *msecs) {
    uint16_t cycles;
    MAP_PRCMRTCGet (secs, &cycles);
    *msecs = RTC_CYCLES_U16MS(cycles);
}

uint32_t pyb_rtc_get_seconds (void) {
    uint32_t seconds;
    uint16_t mseconds;
    pyb_rtc_get_time(&seconds, &mseconds);
    return seconds;
}

void pyb_rtc_calc_future_time (uint32_t a_mseconds, uint32_t *f_seconds, uint16_t *f_mseconds) {
    uint32_t c_seconds;
    uint16_t c_mseconds;
    // get the current time
    pyb_rtc_get_time(&c_seconds, &c_mseconds);
    // calculate the future seconds
    *f_seconds = c_seconds + (a_mseconds / 1000);
    // calculate the "remaining" future mseconds
    *f_mseconds = a_mseconds % 1000;
    // add the current milliseconds
    rtc_msec_add (c_mseconds, f_seconds, f_mseconds);
}

void pyb_rtc_repeat_alarm (pyb_rtc_obj_t *self) {
    if (self->repeat) {
        uint32_t f_seconds, c_seconds;
        uint16_t f_mseconds, c_mseconds;

        pyb_rtc_get_time(&c_seconds, &c_mseconds);

        // substract the time elapsed between waking up and setting up the alarm again
        int32_t wake_ms = ((c_seconds * 1000) + c_mseconds) - ((self->alarm_time_s * 1000) + self->alarm_time_ms);
        int32_t next_alarm = self->alarm_ms - wake_ms;
        next_alarm = next_alarm > 0 ? next_alarm : PYB_RTC_MIN_ALARM_TIME_MS;
        pyb_rtc_calc_future_time (next_alarm, &f_seconds, &f_mseconds);

        // now configure the alarm
        pyb_rtc_set_alarm (self, f_seconds, f_mseconds);
    }
}

void pyb_rtc_disable_alarm (void) {
    pyb_rtc_obj.alarmset = false;
    pyb_rtc_disable_interupt();
}

/******************************************************************************
 DECLARE PRIVATE FUNCTIONS
 ******************************************************************************/
STATIC void pyb_rtc_set_time (uint32_t secs, uint16_t msecs) {
    // add the RTC access time
    rtc_msec_add(RTC_ACCESS_TIME_MSEC, &secs, &msecs);
    // convert from mseconds to cycles
    msecs = RTC_U16MS_CYCLES(msecs);
    // now set the time
    MAP_PRCMRTCSet(secs, msecs);
}

STATIC uint32_t pyb_rtc_reset (void) {
    // fresh reset; configure the RTC Calendar
    // set the date to 1st Jan 2015
    // set the time to 00:00:00
    uint32_t seconds = timeutils_seconds_since_2000(2015, 1, 1, 0, 0, 0);
    // disable any running alarm
    pyb_rtc_disable_alarm();
    // Now set the RTC calendar time
    pyb_rtc_set_time(seconds, 0);
    return seconds;
}

STATIC void pyb_rtc_disable_interupt (void) {
    uint primsk = disable_irq();
    MAP_PRCMIntDisable(PRCM_INT_SLOW_CLK_CTR);
    (void)MAP_PRCMIntStatus();
    enable_irq(primsk);
}

STATIC void pyb_rtc_irq_enable (mp_obj_t self_in) {
    pyb_rtc_obj_t *self = self_in;
    // we always need interrupts if repeat is enabled
    if ((self->pwrmode & PYB_PWR_MODE_ACTIVE) || self->repeat) {
        MAP_PRCMIntEnable(PRCM_INT_SLOW_CLK_CTR);
    } else { // just in case it was already enabled before
        MAP_PRCMIntDisable(PRCM_INT_SLOW_CLK_CTR);
    }
    self->irq_enabled = true;
}

STATIC void pyb_rtc_irq_disable (mp_obj_t self_in) {
    pyb_rtc_obj_t *self = self_in;
    self->irq_enabled = false;
    if (!self->repeat) { // we always need interrupts if repeat is enabled
        pyb_rtc_disable_interupt();
    }
}

STATIC int pyb_rtc_irq_flags (mp_obj_t self_in) {
    pyb_rtc_obj_t *self = self_in;
    return self->irq_flags;
}

STATIC uint pyb_rtc_datetime_s_us(const mp_obj_t datetime, uint32_t *seconds) {
    timeutils_struct_time_t tm;
    uint32_t useconds;

    // set date and time
    mp_obj_t *items;
    size_t len;
    mp_obj_get_array(datetime, &len, &items);

    // verify the tuple
    if (len < 3 || len > 8) {
        mp_raise_ValueError(mpexception_value_invalid_arguments);
    }

    tm.tm_year = mp_obj_get_int(items[0]);
    tm.tm_mon = mp_obj_get_int(items[1]);
    tm.tm_mday = mp_obj_get_int(items[2]);
    if (len < 7) {
        useconds = 0;
    } else {
        useconds = mp_obj_get_int(items[6]);
    }
    if (len < 6) {
        tm.tm_sec = 0;
    } else {
        tm.tm_sec = mp_obj_get_int(items[5]);
    }
    if (len < 5) {
        tm.tm_min = 0;
    } else {
        tm.tm_min = mp_obj_get_int(items[4]);
    }
    if (len < 4) {
        tm.tm_hour = 0;
    } else {
        tm.tm_hour = mp_obj_get_int(items[3]);
    }
    *seconds = timeutils_seconds_since_2000(tm.tm_year, tm.tm_mon, tm.tm_mday, tm.tm_hour, tm.tm_min, tm.tm_sec);
    return useconds;
}

/// The 8-tuple has the same format as CPython's datetime object:
///
///     (year, month, day, hours, minutes, seconds, milliseconds, tzinfo=None)
///
STATIC mp_obj_t pyb_rtc_datetime(mp_obj_t self_in, const mp_obj_t datetime) {
    uint32_t seconds;
    uint32_t useconds;

    if (datetime != MP_OBJ_NULL) {
        useconds = pyb_rtc_datetime_s_us(datetime, &seconds);
        pyb_rtc_set_time (seconds, useconds / 1000);
    } else {
        seconds = pyb_rtc_reset();
    }

    // set WLAN time and date, this is needed to verify certificates
    wlan_set_current_time(seconds);
    return mp_const_none;
}

STATIC void pyb_rtc_set_alarm (pyb_rtc_obj_t *self, uint32_t seconds, uint16_t mseconds) {
    // disable the interrupt before updating anything
    if (self->irq_enabled) {
        MAP_PRCMIntDisable(PRCM_INT_SLOW_CLK_CTR);
    }
    // set the match value
    MAP_PRCMRTCMatchSet(seconds, RTC_U16MS_CYCLES(mseconds));
    self->alarmset = true;
    self->alarm_time_s = seconds;
    self->alarm_time_ms = mseconds;
    // enabled the interrupts again if applicable
    if (self->irq_enabled || self->repeat) {
        MAP_PRCMIntEnable(PRCM_INT_SLOW_CLK_CTR);
    }
}

STATIC void rtc_msec_add (uint16_t msecs_1, uint32_t *secs, uint16_t *msecs_2) {
    if (msecs_1 + *msecs_2 >= 1000) { // larger than one second
        *msecs_2 = (msecs_1 + *msecs_2) - 1000;
        *secs += 1; // carry flag
    } else {
        // simply add the mseconds
        *msecs_2 = msecs_1 + *msecs_2;
    }
}

/******************************************************************************/
// MicroPython bindings

STATIC const mp_arg_t pyb_rtc_init_args[] = {
    { MP_QSTR_id,                             MP_ARG_INT, {.u_int = 0} },
    { MP_QSTR_datetime,                       MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
};
STATIC mp_obj_t pyb_rtc_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *all_args) {
    // parse args
    mp_map_t kw_args;
    mp_map_init_fixed_table(&kw_args, n_kw, all_args + n_args);
    mp_arg_val_t args[MP_ARRAY_SIZE(pyb_rtc_init_args)];
    mp_arg_parse_all(n_args, all_args, &kw_args, MP_ARRAY_SIZE(args), pyb_rtc_init_args, args);

    // check the peripheral id
    if (args[0].u_int != 0) {
        mp_raise_OSError(MP_ENODEV);
    }

    // setup the object
    pyb_rtc_obj_t *self = &pyb_rtc_obj;
    self->base.type = &pyb_rtc_type;

    // set the time and date
    pyb_rtc_datetime((mp_obj_t)&pyb_rtc_obj, args[1].u_obj);

    // pass it to the sleep module
    pyb_sleep_set_rtc_obj (self);

    // return constant object
    return (mp_obj_t)&pyb_rtc_obj;
}

STATIC mp_obj_t pyb_rtc_init (mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
    // parse args
    mp_arg_val_t args[MP_ARRAY_SIZE(pyb_rtc_init_args) - 1];
    mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(args), &pyb_rtc_init_args[1], args);
    return pyb_rtc_datetime(pos_args[0], args[0].u_obj);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_rtc_init_obj, 1, pyb_rtc_init);

STATIC mp_obj_t pyb_rtc_now (mp_obj_t self_in) {
    timeutils_struct_time_t tm;
    uint32_t seconds;
    uint16_t mseconds;

    // get the time from the RTC
    pyb_rtc_get_time(&seconds, &mseconds);
    timeutils_seconds_since_2000_to_struct_time(seconds, &tm);

    mp_obj_t tuple[8] = {
        mp_obj_new_int(tm.tm_year),
        mp_obj_new_int(tm.tm_mon),
        mp_obj_new_int(tm.tm_mday),
        mp_obj_new_int(tm.tm_hour),
        mp_obj_new_int(tm.tm_min),
        mp_obj_new_int(tm.tm_sec),
        mp_obj_new_int(mseconds * 1000),
        mp_const_none
    };
    return mp_obj_new_tuple(8, tuple);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_rtc_now_obj, pyb_rtc_now);

STATIC mp_obj_t pyb_rtc_deinit (mp_obj_t self_in) {
    pyb_rtc_reset();
    return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_rtc_deinit_obj, pyb_rtc_deinit);

STATIC mp_obj_t pyb_rtc_alarm (mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
    STATIC const mp_arg_t allowed_args[] = {
        { MP_QSTR_id,                            MP_ARG_INT,  {.u_int = 0} },
        { MP_QSTR_time,                          MP_ARG_OBJ,  {.u_obj = mp_const_none} },
        { MP_QSTR_repeat,     MP_ARG_KW_ONLY   | MP_ARG_BOOL, {.u_bool = false} },
    };

    // parse args
    pyb_rtc_obj_t *self = pos_args[0];
    mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
    mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(args), allowed_args, args);

    // check the alarm id
    if (args[0].u_int != 0) {
        mp_raise_OSError(MP_ENODEV);
    }

    uint32_t f_seconds;
    uint16_t f_mseconds;
    bool repeat = args[2].u_bool;
    if (MP_OBJ_IS_TYPE(args[1].u_obj, &mp_type_tuple)) { // datetime tuple given
        // repeat cannot be used with a datetime tuple
        if (repeat) {
            mp_raise_ValueError(mpexception_value_invalid_arguments);
        }
        f_mseconds = pyb_rtc_datetime_s_us (args[1].u_obj, &f_seconds) / 1000;
    } else { // then it must be an integer
        self->alarm_ms = mp_obj_get_int(args[1].u_obj);
        pyb_rtc_calc_future_time (self->alarm_ms, &f_seconds, &f_mseconds);
    }

    // store the repepat flag
    self->repeat = repeat;

    // now configure the alarm
    pyb_rtc_set_alarm (self, f_seconds, f_mseconds);

    return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_rtc_alarm_obj, 1, pyb_rtc_alarm);

STATIC mp_obj_t pyb_rtc_alarm_left (mp_uint_t n_args, const mp_obj_t *args) {
    pyb_rtc_obj_t *self = args[0];
    int32_t ms_left;
    uint32_t c_seconds;
    uint16_t c_mseconds;

    // only alarm id 0 is available
    if (n_args > 1 && mp_obj_get_int(args[1]) != 0) {
        mp_raise_OSError(MP_ENODEV);
    }

    // get the current time
    pyb_rtc_get_time(&c_seconds, &c_mseconds);

    // calculate the ms left
    ms_left = ((self->alarm_time_s * 1000) + self->alarm_time_ms) - ((c_seconds * 1000) + c_mseconds);
    if (!self->alarmset || ms_left < 0) {
        ms_left = 0;
    }
    return mp_obj_new_int(ms_left);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_rtc_alarm_left_obj, 1, 2, pyb_rtc_alarm_left);

STATIC mp_obj_t pyb_rtc_alarm_cancel (mp_uint_t n_args, const mp_obj_t *args) {
    // only alarm id 0 is available
    if (n_args > 1 && mp_obj_get_int(args[1]) != 0) {
        mp_raise_OSError(MP_ENODEV);
    }
    // disable the alarm
    pyb_rtc_disable_alarm();
    return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_rtc_alarm_cancel_obj, 1, 2, pyb_rtc_alarm_cancel);

/// \method irq(trigger, priority, handler, wake)
STATIC mp_obj_t pyb_rtc_irq (mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
    mp_arg_val_t args[mp_irq_INIT_NUM_ARGS];
    mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, mp_irq_INIT_NUM_ARGS, mp_irq_init_args, args);
    pyb_rtc_obj_t *self = pos_args[0];

    // save the power mode data for later
    uint8_t pwrmode = (args[3].u_obj == mp_const_none) ? PYB_PWR_MODE_ACTIVE : mp_obj_get_int(args[3].u_obj);
    if (pwrmode > (PYB_PWR_MODE_ACTIVE | PYB_PWR_MODE_LPDS | PYB_PWR_MODE_HIBERNATE)) {
        goto invalid_args;
    }

    // check the trigger
    if (mp_obj_get_int(args[0].u_obj) == PYB_RTC_ALARM0) {
        self->pwrmode = pwrmode;
        pyb_rtc_irq_enable((mp_obj_t)self);
    } else {
        goto invalid_args;
    }

    // the interrupt priority is ignored since it's already set to to highest level by the sleep module
    // to make sure that the wakeup irqs are always called first when resuming from sleep

    // create the callback
    mp_obj_t _irq = mp_irq_new ((mp_obj_t)self, args[2].u_obj, &pyb_rtc_irq_methods);
    self->irq_obj = _irq;

    return _irq;

invalid_args:
    mp_raise_ValueError(mpexception_value_invalid_arguments);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_rtc_irq_obj, 1, pyb_rtc_irq);

STATIC const mp_rom_map_elem_t pyb_rtc_locals_dict_table[] = {
    { MP_ROM_QSTR(MP_QSTR_init),            MP_ROM_PTR(&pyb_rtc_init_obj) },
    { MP_ROM_QSTR(MP_QSTR_deinit),          MP_ROM_PTR(&pyb_rtc_deinit_obj) },
    { MP_ROM_QSTR(MP_QSTR_now),             MP_ROM_PTR(&pyb_rtc_now_obj) },
    { MP_ROM_QSTR(MP_QSTR_alarm),           MP_ROM_PTR(&pyb_rtc_alarm_obj) },
    { MP_ROM_QSTR(MP_QSTR_alarm_left),      MP_ROM_PTR(&pyb_rtc_alarm_left_obj) },
    { MP_ROM_QSTR(MP_QSTR_alarm_cancel),    MP_ROM_PTR(&pyb_rtc_alarm_cancel_obj) },
    { MP_ROM_QSTR(MP_QSTR_irq),             MP_ROM_PTR(&pyb_rtc_irq_obj) },

    // class constants
    { MP_ROM_QSTR(MP_QSTR_ALARM0),          MP_ROM_INT(PYB_RTC_ALARM0) },
};
STATIC MP_DEFINE_CONST_DICT(pyb_rtc_locals_dict, pyb_rtc_locals_dict_table);

const mp_obj_type_t pyb_rtc_type = {
    { &mp_type_type },
    .name = MP_QSTR_RTC,
    .make_new = pyb_rtc_make_new,
    .locals_dict = (mp_obj_t)&pyb_rtc_locals_dict,
};

STATIC const mp_irq_methods_t pyb_rtc_irq_methods = {
    .init = pyb_rtc_irq,
    .enable = pyb_rtc_irq_enable,
    .disable = pyb_rtc_irq_disable,
    .flags = pyb_rtc_irq_flags
};