CircuitPython

Source code browser

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
/*
 * This file is part of the MicroPython project, http://micropython.org/
 *
 * The MIT License (MIT)
 *
 * Copyright (c) 2013, 2014 Damien P. George
 * Copyright (c) 2015 Daniel Campora
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

#include <stdint.h>
#include <stdio.h>
#include <string.h>

#include "py/mpconfig.h"
#include "py/obj.h"
#include "py/nlr.h"
#include "py/runtime.h"
#include "py/gc.h"
#include "py/mperrno.h"
#include "py/mphal.h"
#include "inc/hw_types.h"
#include "inc/hw_ints.h"
#include "inc/hw_memmap.h"
#include "inc/hw_timer.h"
#include "rom_map.h"
#include "interrupt.h"
#include "prcm.h"
#include "timer.h"
#include "pin.h"
#include "pybtimer.h"
#include "pybpin.h"
#include "pins.h"
#include "mpirq.h"
#include "pybsleep.h"
#include "mpexception.h"


/// \moduleref pyb
/// \class Timer - generate periodic events, count events, and create PWM signals.
///
/// Each timer consists of a counter that counts up at a certain rate.  The rate
/// at which it counts is the peripheral clock frequency (in Hz) divided by the
/// timer prescaler.  When the counter reaches the timer period it triggers an
/// event, and the counter resets back to zero.  By using the irq method,
/// the timer event can call a Python function.

/******************************************************************************
 DECLARE PRIVATE CONSTANTS
 ******************************************************************************/
#define PYBTIMER_NUM_TIMERS                         (4)
#define PYBTIMER_POLARITY_POS                       (0x01)
#define PYBTIMER_POLARITY_NEG                       (0x02)

#define PYBTIMER_TIMEOUT_TRIGGER                    (0x01)
#define PYBTIMER_MATCH_TRIGGER                      (0x02)

#define PYBTIMER_SRC_FREQ_HZ                        HAL_FCPU_HZ

/******************************************************************************
 DEFINE PRIVATE TYPES
 ******************************************************************************/
typedef struct _pyb_timer_obj_t {
    mp_obj_base_t base;
    uint32_t timer;
    uint32_t config;
    uint16_t irq_trigger;
    uint16_t irq_flags;
    uint8_t peripheral;
    uint8_t id;
} pyb_timer_obj_t;

typedef struct _pyb_timer_channel_obj_t {
    mp_obj_base_t base;
    struct _pyb_timer_obj_t *timer;
    uint32_t frequency;
    uint32_t period;
    uint16_t channel;
    uint16_t duty_cycle;
    uint8_t  polarity;
} pyb_timer_channel_obj_t;

/******************************************************************************
 DEFINE PRIVATE DATA
 ******************************************************************************/
STATIC const mp_irq_methods_t pyb_timer_channel_irq_methods;
STATIC pyb_timer_obj_t pyb_timer_obj[PYBTIMER_NUM_TIMERS] = {{.timer = TIMERA0_BASE, .peripheral = PRCM_TIMERA0},
                                                             {.timer = TIMERA1_BASE, .peripheral = PRCM_TIMERA1},
                                                             {.timer = TIMERA2_BASE, .peripheral = PRCM_TIMERA2},
                                                             {.timer = TIMERA3_BASE, .peripheral = PRCM_TIMERA3}};
STATIC const mp_obj_type_t pyb_timer_channel_type;
STATIC const mp_obj_t pyb_timer_pwm_pin[8] = {&pin_GP24, MP_OBJ_NULL, &pin_GP25, MP_OBJ_NULL, MP_OBJ_NULL, &pin_GP9, &pin_GP10, &pin_GP11};

/******************************************************************************
 DECLARE PRIVATE FUNCTIONS
 ******************************************************************************/
STATIC mp_obj_t pyb_timer_channel_irq (mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args);
STATIC void timer_disable (pyb_timer_obj_t *tim);
STATIC void timer_channel_init (pyb_timer_channel_obj_t *ch);
STATIC void TIMER0AIntHandler(void);
STATIC void TIMER0BIntHandler(void);
STATIC void TIMER1AIntHandler(void);
STATIC void TIMER1BIntHandler(void);
STATIC void TIMER2AIntHandler(void);
STATIC void TIMER2BIntHandler(void);
STATIC void TIMER3AIntHandler(void);
STATIC void TIMER3BIntHandler(void);

/******************************************************************************
 DEFINE PUBLIC FUNCTIONS
 ******************************************************************************/
void timer_init0 (void) {
    mp_obj_list_init(&MP_STATE_PORT(pyb_timer_channel_obj_list), 0);
}

/******************************************************************************
 DEFINE PRIVATE FUNCTIONS
 ******************************************************************************/
STATIC void pyb_timer_channel_irq_enable (mp_obj_t self_in) {
    pyb_timer_channel_obj_t *self = self_in;
    MAP_TimerIntClear(self->timer->timer, self->timer->irq_trigger & self->channel);
    MAP_TimerIntEnable(self->timer->timer, self->timer->irq_trigger & self->channel);
}

STATIC void pyb_timer_channel_irq_disable (mp_obj_t self_in) {
    pyb_timer_channel_obj_t *self = self_in;
    MAP_TimerIntDisable(self->timer->timer, self->timer->irq_trigger & self->channel);
}

STATIC int pyb_timer_channel_irq_flags (mp_obj_t self_in) {
    pyb_timer_channel_obj_t *self = self_in;
    return self->timer->irq_flags;
}

STATIC pyb_timer_channel_obj_t *pyb_timer_channel_find (uint32_t timer, uint16_t channel_n) {
    for (mp_uint_t i = 0; i < MP_STATE_PORT(pyb_timer_channel_obj_list).len; i++) {
        pyb_timer_channel_obj_t *ch = ((pyb_timer_channel_obj_t *)(MP_STATE_PORT(pyb_timer_channel_obj_list).items[i]));
        // any 32-bit timer must be matched by any of its 16-bit versions
        if (ch->timer->timer == timer && ((ch->channel & TIMER_A) == channel_n || (ch->channel & TIMER_B) == channel_n)) {
            return ch;
        }
    }
    return MP_OBJ_NULL;
}

STATIC void pyb_timer_channel_remove (pyb_timer_channel_obj_t *ch) {
    pyb_timer_channel_obj_t *channel;
    if ((channel = pyb_timer_channel_find(ch->timer->timer, ch->channel))) {
        mp_obj_list_remove(&MP_STATE_PORT(pyb_timer_channel_obj_list), channel);
        // unregister it with the sleep module
        pyb_sleep_remove((const mp_obj_t)channel);
    }
}

STATIC void pyb_timer_channel_add (pyb_timer_channel_obj_t *ch) {
    // remove it in case it already exists
    pyb_timer_channel_remove(ch);
    mp_obj_list_append(&MP_STATE_PORT(pyb_timer_channel_obj_list), ch);
    // register it with the sleep module
    pyb_sleep_add((const mp_obj_t)ch, (WakeUpCB_t)timer_channel_init);
}

STATIC void timer_disable (pyb_timer_obj_t *tim) {
    // disable all timers and it's interrupts
    MAP_TimerDisable(tim->timer, TIMER_A | TIMER_B);
    MAP_TimerIntDisable(tim->timer, tim->irq_trigger);
    MAP_TimerIntClear(tim->timer, tim->irq_trigger);
    pyb_timer_channel_obj_t *ch;
    // disable its channels
    if ((ch = pyb_timer_channel_find (tim->timer, TIMER_A))) {
        pyb_sleep_remove(ch);
    }
    if ((ch = pyb_timer_channel_find (tim->timer, TIMER_B))) {
        pyb_sleep_remove(ch);
    }
    MAP_PRCMPeripheralClkDisable(tim->peripheral, PRCM_RUN_MODE_CLK | PRCM_SLP_MODE_CLK);
}

// computes prescaler period and match value so timer triggers at freq-Hz
STATIC uint32_t compute_prescaler_period_and_match_value(pyb_timer_channel_obj_t *ch, uint32_t *period_out, uint32_t *match_out) {
    uint32_t maxcount = (ch->channel == (TIMER_A | TIMER_B)) ? 0xFFFFFFFF : 0xFFFF;
    uint32_t prescaler;
    uint32_t period_c = (ch->frequency > 0) ? PYBTIMER_SRC_FREQ_HZ / ch->frequency : ((PYBTIMER_SRC_FREQ_HZ / 1000000) * ch->period);

    period_c = MAX(1, period_c) - 1;
    if (period_c == 0) {
        goto error;
    }

    prescaler = period_c >> 16; // The prescaler is an extension of the timer counter
    *period_out = period_c;

    if (prescaler > 0xFF && maxcount == 0xFFFF) {
        goto error;
    }
    // check limit values for the duty cycle
    if (ch->duty_cycle == 0) {
        *match_out = period_c - 1;
    } else {
        if (period_c > 0xFFFF) {
            uint32_t match = (period_c * 100) / 10000;
            *match_out = period_c - ((match * ch->duty_cycle) / 100);
        } else {
            *match_out = period_c - ((period_c * ch->duty_cycle) / 10000);
        }
    }
    return prescaler;

error:
    mp_raise_ValueError(mpexception_value_invalid_arguments);
}

STATIC void timer_init (pyb_timer_obj_t *tim) {
    MAP_PRCMPeripheralClkEnable(tim->peripheral, PRCM_RUN_MODE_CLK | PRCM_SLP_MODE_CLK);
    MAP_PRCMPeripheralReset(tim->peripheral);
    MAP_TimerConfigure(tim->timer, tim->config);
}

STATIC void timer_channel_init (pyb_timer_channel_obj_t *ch) {
    // calculate the period, the prescaler and the match value
    uint32_t period_c;
    uint32_t match;
    uint32_t prescaler = compute_prescaler_period_and_match_value(ch, &period_c, &match);

    // set the prescaler
    MAP_TimerPrescaleSet(ch->timer->timer, ch->channel, (prescaler < 0xFF) ? prescaler : 0);

    // set the load value
    MAP_TimerLoadSet(ch->timer->timer, ch->channel, period_c);

    // configure the pwm if we are in such mode
    if ((ch->timer->config & 0x0F) == TIMER_CFG_A_PWM) {
        // invert the timer output if required
        MAP_TimerControlLevel(ch->timer->timer, ch->channel, (ch->polarity == PYBTIMER_POLARITY_NEG) ? true : false);
        // set the match value (which is simply the duty cycle translated to ticks)
        MAP_TimerMatchSet(ch->timer->timer, ch->channel, match);
        MAP_TimerPrescaleMatchSet(ch->timer->timer, ch->channel, match >> 16);
    }

#ifdef DEBUG
    // stall the timer when the processor is halted while debugging
    MAP_TimerControlStall(ch->timer->timer, ch->channel, true);
#endif

    // now enable the timer channel
    MAP_TimerEnable(ch->timer->timer, ch->channel);
}

/******************************************************************************/
/* MicroPython bindings                                                      */

STATIC void pyb_timer_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
    pyb_timer_obj_t *tim = self_in;
    uint32_t mode = tim->config & 0xFF;

    // timer mode
    qstr mode_qst = MP_QSTR_PWM;
    switch(mode) {
    case TIMER_CFG_A_ONE_SHOT_UP:
        mode_qst = MP_QSTR_ONE_SHOT;
        break;
    case TIMER_CFG_A_PERIODIC_UP:
        mode_qst = MP_QSTR_PERIODIC;
        break;
    default:
        break;
    }
    mp_printf(print, "Timer(%u, mode=Timer.%q)", tim->id, mode_qst);
}

STATIC mp_obj_t pyb_timer_init_helper(pyb_timer_obj_t *tim, mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
    static const mp_arg_t allowed_args[] = {
        { MP_QSTR_mode,         MP_ARG_REQUIRED | MP_ARG_INT, },
        { MP_QSTR_width,        MP_ARG_KW_ONLY  | MP_ARG_INT, {.u_int = 16} },
    };

    // parse args
    mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
    mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);

    // check the mode
    uint32_t _mode = args[0].u_int;
    if (_mode != TIMER_CFG_A_ONE_SHOT_UP && _mode != TIMER_CFG_A_PERIODIC_UP && _mode != TIMER_CFG_A_PWM) {
        goto error;
    }

    // check the width
    if (args[1].u_int != 16 && args[1].u_int != 32) {
        goto error;
    }
    bool is16bit = (args[1].u_int == 16);

    if (!is16bit && _mode == TIMER_CFG_A_PWM) {
        // 32-bit mode is only available when in free running modes
        goto error;
    }
    tim->config = is16bit ? ((_mode | (_mode << 8)) | TIMER_CFG_SPLIT_PAIR) : _mode;

    timer_init(tim);
    // register it with the sleep module
    pyb_sleep_add ((const mp_obj_t)tim, (WakeUpCB_t)timer_init);

    return mp_const_none;

error:
    mp_raise_ValueError(mpexception_value_invalid_arguments);
}

STATIC mp_obj_t pyb_timer_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
    // check arguments
    mp_arg_check_num(n_args, n_kw, 1, MP_OBJ_FUN_ARGS_MAX, true);

    // create a new Timer object
    int32_t timer_idx = mp_obj_get_int(args[0]);
    if (timer_idx < 0 || timer_idx > (PYBTIMER_NUM_TIMERS - 1)) {
        mp_raise_OSError(MP_ENODEV);
    }

    pyb_timer_obj_t *tim = &pyb_timer_obj[timer_idx];
    tim->base.type = &pyb_timer_type;
    tim->id = timer_idx;

    if (n_args > 1 || n_kw > 0) {
        // start the peripheral
        mp_map_t kw_args;
        mp_map_init_fixed_table(&kw_args, n_kw, args + n_args);
        pyb_timer_init_helper(tim, n_args - 1, args + 1, &kw_args);
    }
    return (mp_obj_t)tim;
}

STATIC mp_obj_t pyb_timer_init(mp_uint_t n_args, const mp_obj_t *args, mp_map_t *kw_args) {
    return pyb_timer_init_helper(args[0], n_args - 1, args + 1, kw_args);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_timer_init_obj, 1, pyb_timer_init);

STATIC mp_obj_t pyb_timer_deinit(mp_obj_t self_in) {
    pyb_timer_obj_t *self = self_in;
    timer_disable(self);
    return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_timer_deinit_obj, pyb_timer_deinit);

STATIC mp_obj_t pyb_timer_channel(mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
    static const mp_arg_t allowed_args[] = {
        { MP_QSTR_freq,                MP_ARG_KW_ONLY  | MP_ARG_INT, {.u_int = 0} },
        { MP_QSTR_period,              MP_ARG_KW_ONLY  | MP_ARG_INT, {.u_int = 0} },
        { MP_QSTR_polarity,            MP_ARG_KW_ONLY  | MP_ARG_INT, {.u_int = PYBTIMER_POLARITY_POS} },
        { MP_QSTR_duty_cycle,          MP_ARG_KW_ONLY  | MP_ARG_INT, {.u_int = 0} },
    };

    pyb_timer_obj_t *tim = pos_args[0];
    mp_int_t channel_n = mp_obj_get_int(pos_args[1]);

    // verify that the timer has been already initialized
    if (!tim->config) {
        mp_raise_OSError(MP_EPERM);
    }
    if (channel_n != TIMER_A && channel_n != TIMER_B && channel_n != (TIMER_A | TIMER_B)) {
        // invalid channel
        goto error;
    }
    if (channel_n == (TIMER_A | TIMER_B) && (tim->config & TIMER_CFG_SPLIT_PAIR)) {
        // 32-bit channel selected when the timer is in 16-bit mode
        goto error;
    }

    // if only the channel number is given return the previously
    // allocated channel (or None if no previous channel)
    if (n_args == 2 && kw_args->used == 0) {
        pyb_timer_channel_obj_t *ch;
        if ((ch = pyb_timer_channel_find(tim->timer, channel_n))) {
            return ch;
        }
        return mp_const_none;
    }

    // parse the arguments
    mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
    mp_arg_parse_all(n_args - 2, pos_args + 2, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);

    // throw an exception if both frequency and period are given
    if (args[0].u_int != 0 && args[1].u_int != 0) {
        goto error;
    }
    // check that at least one of them has a valid value
    if (args[0].u_int <= 0 && args[1].u_int <= 0) {
        goto error;
    }
    // check that the polarity is not 'both' in pwm mode
    if ((tim->config & TIMER_A) == TIMER_CFG_A_PWM && args[2].u_int == (PYBTIMER_POLARITY_POS | PYBTIMER_POLARITY_NEG)) {
        goto error;
    }

    // allocate a new timer channel
    pyb_timer_channel_obj_t *ch = m_new_obj(pyb_timer_channel_obj_t);
    ch->base.type = &pyb_timer_channel_type;
    ch->timer = tim;
    ch->channel = channel_n;

    // get the frequency the polarity and the duty cycle
    ch->frequency = args[0].u_int;
    ch->period = args[1].u_int;
    ch->polarity = args[2].u_int;
    ch->duty_cycle = MIN(10000, MAX(0, args[3].u_int));

    timer_channel_init(ch);

    // assign the pin
    if ((ch->timer->config & 0x0F) == TIMER_CFG_A_PWM) {
        uint32_t ch_idx = (ch->channel == TIMER_A) ? 0 : 1;
        // use the default pin if available
        mp_obj_t pin_o = (mp_obj_t)pyb_timer_pwm_pin[(ch->timer->id * 2) + ch_idx];
        if (pin_o != MP_OBJ_NULL) {
            pin_obj_t *pin = pin_find(pin_o);
            pin_config (pin, pin_find_af_index(pin, PIN_FN_TIM, ch->timer->id, PIN_TYPE_TIM_PWM),
                        0, PIN_TYPE_STD, -1, PIN_STRENGTH_4MA);
        }
    }

    // add the timer to the list
    pyb_timer_channel_add(ch);

    return ch;

error:
    mp_raise_ValueError(mpexception_value_invalid_arguments);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_timer_channel_obj, 2, pyb_timer_channel);

STATIC const mp_rom_map_elem_t pyb_timer_locals_dict_table[] = {
    // instance methods
    { MP_ROM_QSTR(MP_QSTR_init),                    MP_ROM_PTR(&pyb_timer_init_obj) },
    { MP_ROM_QSTR(MP_QSTR_deinit),                  MP_ROM_PTR(&pyb_timer_deinit_obj) },
    { MP_ROM_QSTR(MP_QSTR_channel),                 MP_ROM_PTR(&pyb_timer_channel_obj) },

    // class constants
    { MP_ROM_QSTR(MP_QSTR_A),                       MP_ROM_INT(TIMER_A) },
    { MP_ROM_QSTR(MP_QSTR_B),                       MP_ROM_INT(TIMER_B) },
    { MP_ROM_QSTR(MP_QSTR_ONE_SHOT),                MP_ROM_INT(TIMER_CFG_A_ONE_SHOT_UP) },
    { MP_ROM_QSTR(MP_QSTR_PERIODIC),                MP_ROM_INT(TIMER_CFG_A_PERIODIC_UP) },
    { MP_ROM_QSTR(MP_QSTR_PWM),                     MP_ROM_INT(TIMER_CFG_A_PWM) },
    { MP_ROM_QSTR(MP_QSTR_POSITIVE),                MP_ROM_INT(PYBTIMER_POLARITY_POS) },
    { MP_ROM_QSTR(MP_QSTR_NEGATIVE),                MP_ROM_INT(PYBTIMER_POLARITY_NEG) },
    { MP_ROM_QSTR(MP_QSTR_TIMEOUT),                 MP_ROM_INT(PYBTIMER_TIMEOUT_TRIGGER) },
    { MP_ROM_QSTR(MP_QSTR_MATCH),                   MP_ROM_INT(PYBTIMER_MATCH_TRIGGER) },
};
STATIC MP_DEFINE_CONST_DICT(pyb_timer_locals_dict, pyb_timer_locals_dict_table);

const mp_obj_type_t pyb_timer_type = {
    { &mp_type_type },
    .name = MP_QSTR_Timer,
    .print = pyb_timer_print,
    .make_new = pyb_timer_make_new,
    .locals_dict = (mp_obj_t)&pyb_timer_locals_dict,
};

STATIC const mp_irq_methods_t pyb_timer_channel_irq_methods = {
    .init = pyb_timer_channel_irq,
    .enable = pyb_timer_channel_irq_enable,
    .disable = pyb_timer_channel_irq_disable,
    .flags = pyb_timer_channel_irq_flags,
};

STATIC void TIMERGenericIntHandler(uint32_t timer, uint16_t channel) {
    pyb_timer_channel_obj_t *self;
    uint32_t status;
    if ((self = pyb_timer_channel_find(timer, channel))) {
        status = MAP_TimerIntStatus(self->timer->timer, true) & self->channel;
        MAP_TimerIntClear(self->timer->timer, status);
        mp_irq_handler(mp_irq_find(self));
    }
}

STATIC void TIMER0AIntHandler(void) {
    TIMERGenericIntHandler(TIMERA0_BASE, TIMER_A);
}

STATIC void TIMER0BIntHandler(void) {
    TIMERGenericIntHandler(TIMERA0_BASE, TIMER_B);
}

STATIC void TIMER1AIntHandler(void) {
    TIMERGenericIntHandler(TIMERA1_BASE, TIMER_A);
}

STATIC void TIMER1BIntHandler(void) {
    TIMERGenericIntHandler(TIMERA1_BASE, TIMER_B);
}

STATIC void TIMER2AIntHandler(void) {
    TIMERGenericIntHandler(TIMERA2_BASE, TIMER_A);
}

STATIC void TIMER2BIntHandler(void) {
    TIMERGenericIntHandler(TIMERA2_BASE, TIMER_B);
}

STATIC void TIMER3AIntHandler(void) {
    TIMERGenericIntHandler(TIMERA3_BASE, TIMER_A);
}

STATIC void TIMER3BIntHandler(void) {
    TIMERGenericIntHandler(TIMERA3_BASE, TIMER_B);
}

STATIC void pyb_timer_channel_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
    pyb_timer_channel_obj_t *ch = self_in;
    char *ch_id = "AB";
    // timer channel
    if (ch->channel == TIMER_A) {
        ch_id = "A";
    } else if (ch->channel == TIMER_B) {
        ch_id = "B";
    }

    mp_printf(print, "timer.channel(Timer.%s, %q=%u", ch_id, MP_QSTR_freq, ch->frequency);

    uint32_t mode = ch->timer->config & 0xFF;
    if (mode == TIMER_CFG_A_PWM) {
        mp_printf(print, ", %q=Timer.", MP_QSTR_polarity);
        switch (ch->polarity) {
            case PYBTIMER_POLARITY_POS:
                mp_printf(print, "POSITIVE");
                break;
            case PYBTIMER_POLARITY_NEG:
                mp_printf(print, "NEGATIVE");
                break;
            default:
                mp_printf(print, "BOTH");
                break;
        }
        mp_printf(print, ", %q=%u.%02u", MP_QSTR_duty_cycle, ch->duty_cycle / 100, ch->duty_cycle % 100);
    }
    mp_printf(print, ")");
}

STATIC mp_obj_t pyb_timer_channel_freq(mp_uint_t n_args, const mp_obj_t *args) {
    pyb_timer_channel_obj_t *ch = args[0];
    if (n_args == 1) {
        // get
        return mp_obj_new_int(ch->frequency);
    } else {
        // set
        int32_t _frequency = mp_obj_get_int(args[1]);
        if (_frequency <= 0) {
            mp_raise_ValueError(mpexception_value_invalid_arguments);
        }
        ch->frequency = _frequency;
        ch->period = 1000000 / _frequency;
        timer_channel_init(ch);
        return mp_const_none;
    }
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_timer_channel_freq_obj, 1, 2, pyb_timer_channel_freq);

STATIC mp_obj_t pyb_timer_channel_period(mp_uint_t n_args, const mp_obj_t *args) {
    pyb_timer_channel_obj_t *ch = args[0];
    if (n_args == 1) {
        // get
        return mp_obj_new_int(ch->period);
    } else {
        // set
        int32_t _period = mp_obj_get_int(args[1]);
        if (_period <= 0) {
            mp_raise_ValueError(mpexception_value_invalid_arguments);
        }
        ch->period = _period;
        ch->frequency = 1000000 / _period;
        timer_channel_init(ch);
        return mp_const_none;
    }
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_timer_channel_period_obj, 1, 2, pyb_timer_channel_period);

STATIC mp_obj_t pyb_timer_channel_duty_cycle(mp_uint_t n_args, const mp_obj_t *args) {
    pyb_timer_channel_obj_t *ch = args[0];
    if (n_args == 1) {
        // get
        return mp_obj_new_int(ch->duty_cycle);
    } else {
        // duty cycle must be converted from percentage to ticks
        // calculate the period, the prescaler and the match value
        uint32_t period_c;
        uint32_t match;
        ch->duty_cycle = MIN(10000, MAX(0, mp_obj_get_int(args[1])));
        compute_prescaler_period_and_match_value(ch, &period_c, &match);
        if (n_args == 3) {
            // set the new polarity if requested
            ch->polarity = mp_obj_get_int(args[2]);
            MAP_TimerControlLevel(ch->timer->timer, ch->channel, (ch->polarity == PYBTIMER_POLARITY_NEG) ? true : false);
        }
        MAP_TimerMatchSet(ch->timer->timer, ch->channel, match);
        MAP_TimerPrescaleMatchSet(ch->timer->timer, ch->channel, match >> 16);
        return mp_const_none;
    }
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_timer_channel_duty_cycle_obj, 1, 3, pyb_timer_channel_duty_cycle);

STATIC mp_obj_t pyb_timer_channel_irq (mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
    mp_arg_val_t args[mp_irq_INIT_NUM_ARGS];
    mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, mp_irq_INIT_NUM_ARGS, mp_irq_init_args, args);
    pyb_timer_channel_obj_t *ch = pos_args[0];

    // convert the priority to the correct value
    uint priority = mp_irq_translate_priority (args[1].u_int);

    // validate the power mode
    uint8_t pwrmode = (args[3].u_obj == mp_const_none) ? PYB_PWR_MODE_ACTIVE : mp_obj_get_int(args[3].u_obj);
    if (pwrmode != PYB_PWR_MODE_ACTIVE) {
        goto invalid_args;
    }

    // get the trigger
    uint trigger = mp_obj_get_int(args[0].u_obj);

    // disable the callback first
    pyb_timer_channel_irq_disable(ch);

    uint8_t shift = (ch->channel == TIMER_B) ? 8 : 0;
    uint32_t _config = (ch->channel == TIMER_B) ? ((ch->timer->config & TIMER_B) >> 8) : (ch->timer->config & TIMER_A);
    switch (_config) {
    case TIMER_CFG_A_ONE_SHOT_UP:
    case TIMER_CFG_A_PERIODIC_UP:
        ch->timer->irq_trigger |= TIMER_TIMA_TIMEOUT << shift;
        if (trigger != PYBTIMER_TIMEOUT_TRIGGER) {
            goto invalid_args;
        }
        break;
    case TIMER_CFG_A_PWM:
        // special case for the PWM match interrupt
        ch->timer->irq_trigger |= ((ch->channel & TIMER_A) == TIMER_A) ? TIMER_TIMA_MATCH : TIMER_TIMB_MATCH;
        if (trigger != PYBTIMER_MATCH_TRIGGER) {
            goto invalid_args;
        }
        break;
    default:
        break;
    }
    // special case for a 32-bit timer
    if (ch->channel == (TIMER_A | TIMER_B)) {
       ch->timer->irq_trigger |= (ch->timer->irq_trigger << 8);
    }

    void (*pfnHandler)(void);
    uint32_t intregister;
    switch (ch->timer->timer) {
    case TIMERA0_BASE:
        if (ch->channel == TIMER_B) {
            pfnHandler = &TIMER0BIntHandler;
            intregister = INT_TIMERA0B;
        } else {
            pfnHandler = &TIMER0AIntHandler;
            intregister = INT_TIMERA0A;
        }
        break;
    case TIMERA1_BASE:
        if (ch->channel == TIMER_B) {
            pfnHandler = &TIMER1BIntHandler;
            intregister = INT_TIMERA1B;
        } else {
            pfnHandler = &TIMER1AIntHandler;
            intregister = INT_TIMERA1A;
        }
        break;
    case TIMERA2_BASE:
        if (ch->channel == TIMER_B) {
            pfnHandler = &TIMER2BIntHandler;
            intregister = INT_TIMERA2B;
        } else {
            pfnHandler = &TIMER2AIntHandler;
            intregister = INT_TIMERA2A;
        }
        break;
    default:
        if (ch->channel == TIMER_B) {
            pfnHandler = &TIMER3BIntHandler;
            intregister = INT_TIMERA3B;
        } else {
            pfnHandler = &TIMER3AIntHandler;
            intregister = INT_TIMERA3A;
        }
        break;
    }

    // register the interrupt and configure the priority
    MAP_IntPrioritySet(intregister, priority);
    MAP_TimerIntRegister(ch->timer->timer, ch->channel, pfnHandler);

    // create the callback
    mp_obj_t _irq = mp_irq_new (ch, args[2].u_obj, &pyb_timer_channel_irq_methods);

    // enable the callback before returning
    pyb_timer_channel_irq_enable(ch);

    return _irq;

invalid_args:
    mp_raise_ValueError(mpexception_value_invalid_arguments);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_timer_channel_irq_obj, 1, pyb_timer_channel_irq);

STATIC const mp_rom_map_elem_t pyb_timer_channel_locals_dict_table[] = {
    // instance methods
    { MP_ROM_QSTR(MP_QSTR_freq),                 MP_ROM_PTR(&pyb_timer_channel_freq_obj) },
    { MP_ROM_QSTR(MP_QSTR_period),               MP_ROM_PTR(&pyb_timer_channel_period_obj) },
    { MP_ROM_QSTR(MP_QSTR_duty_cycle),           MP_ROM_PTR(&pyb_timer_channel_duty_cycle_obj) },
    { MP_ROM_QSTR(MP_QSTR_irq),                  MP_ROM_PTR(&pyb_timer_channel_irq_obj) },
};
STATIC MP_DEFINE_CONST_DICT(pyb_timer_channel_locals_dict, pyb_timer_channel_locals_dict_table);

STATIC const mp_obj_type_t pyb_timer_channel_type = {
    { &mp_type_type },
    .name = MP_QSTR_TimerChannel,
    .print = pyb_timer_channel_print,
    .locals_dict = (mp_obj_t)&pyb_timer_channel_locals_dict,
};