CircuitPython

Source code browser

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
/*
 * This file is part of the MicroPython project, http://micropython.org/
 *
 * The MIT License (MIT)
 *
 * Copyright (c) 2013-2015 Damien P. George
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include <assert.h>

#include "py/scope.h"
#include "py/emit.h"
#include "py/compile.h"
#include "py/runtime.h"
#include "py/asmbase.h"

#if MICROPY_ENABLE_COMPILER

// TODO need to mangle __attr names

#define INVALID_LABEL (0xffff)

typedef enum {
// define rules with a compile function
#define DEF_RULE(rule, comp, kind, ...) PN_##rule,
#define DEF_RULE_NC(rule, kind, ...)
#include "py/grammar.h"
#undef DEF_RULE
#undef DEF_RULE_NC
    PN_const_object, // special node for a constant, generic Python object
// define rules without a compile function
#define DEF_RULE(rule, comp, kind, ...)
#define DEF_RULE_NC(rule, kind, ...) PN_##rule,
#include "py/grammar.h"
#undef DEF_RULE
#undef DEF_RULE_NC
} pn_kind_t;

#define NEED_METHOD_TABLE MICROPY_EMIT_NATIVE

#if NEED_METHOD_TABLE

// we need a method table to do the lookup for the emitter functions
#define EMIT(fun) (comp->emit_method_table->fun(comp->emit))
#define EMIT_ARG(fun, ...) (comp->emit_method_table->fun(comp->emit, __VA_ARGS__))
#define EMIT_LOAD_FAST(qst, local_num) (comp->emit_method_table->load_id.fast(comp->emit, qst, local_num))
#define EMIT_LOAD_GLOBAL(qst) (comp->emit_method_table->load_id.global(comp->emit, qst))

#else

// if we only have the bytecode emitter enabled then we can do a direct call to the functions
#define EMIT(fun) (mp_emit_bc_##fun(comp->emit))
#define EMIT_ARG(fun, ...) (mp_emit_bc_##fun(comp->emit, __VA_ARGS__))
#define EMIT_LOAD_FAST(qst, local_num) (mp_emit_bc_load_fast(comp->emit, qst, local_num))
#define EMIT_LOAD_GLOBAL(qst) (mp_emit_bc_load_global(comp->emit, qst))

#endif

#if MICROPY_EMIT_NATIVE
// define a macro to access external native emitter
#if MICROPY_EMIT_X64
#define NATIVE_EMITTER(f) emit_native_x64_##f
#elif MICROPY_EMIT_X86
#define NATIVE_EMITTER(f) emit_native_x86_##f
#elif MICROPY_EMIT_THUMB
#define NATIVE_EMITTER(f) emit_native_thumb_##f
#elif MICROPY_EMIT_ARM
#define NATIVE_EMITTER(f) emit_native_arm_##f
#elif MICROPY_EMIT_XTENSA
#define NATIVE_EMITTER(f) emit_native_xtensa_##f
#else
#error "unknown native emitter"
#endif
#endif

#if MICROPY_EMIT_INLINE_ASM
// define macros for inline assembler
#if MICROPY_EMIT_INLINE_THUMB
#define ASM_DECORATOR_QSTR MP_QSTR_asm_thumb
#define ASM_EMITTER(f) emit_inline_thumb_##f
#elif MICROPY_EMIT_INLINE_XTENSA
#define ASM_DECORATOR_QSTR MP_QSTR_asm_xtensa
#define ASM_EMITTER(f) emit_inline_xtensa_##f
#else
#error "unknown asm emitter"
#endif
#endif

#define EMIT_INLINE_ASM(fun) (comp->emit_inline_asm_method_table->fun(comp->emit_inline_asm))
#define EMIT_INLINE_ASM_ARG(fun, ...) (comp->emit_inline_asm_method_table->fun(comp->emit_inline_asm, __VA_ARGS__))

// elements in this struct are ordered to make it compact
typedef struct _compiler_t {
    qstr source_file;

    uint8_t is_repl;
    uint8_t pass; // holds enum type pass_kind_t
    uint8_t have_star;

    // try to keep compiler clean from nlr
    mp_obj_t compile_error; // set to an exception object if there's an error
    size_t compile_error_line; // set to best guess of line of error

    uint next_label;

    uint16_t num_dict_params;
    uint16_t num_default_params;

    uint16_t break_label; // highest bit set indicates we are breaking out of a for loop
    uint16_t continue_label;
    uint16_t cur_except_level; // increased for SETUP_EXCEPT, SETUP_FINALLY; decreased for POP_BLOCK, POP_EXCEPT
    uint16_t break_continue_except_level;

    scope_t *scope_head;
    scope_t *scope_cur;

    emit_t *emit;                                   // current emitter
    #if NEED_METHOD_TABLE
    const emit_method_table_t *emit_method_table;   // current emit method table
    #endif

    #if MICROPY_EMIT_INLINE_ASM
    emit_inline_asm_t *emit_inline_asm;                                   // current emitter for inline asm
    const emit_inline_asm_method_table_t *emit_inline_asm_method_table;   // current emit method table for inline asm
    #endif
} compiler_t;

STATIC void compile_error_set_line(compiler_t *comp, mp_parse_node_t pn) {
    // if the line of the error is unknown then try to update it from the pn
    if (comp->compile_error_line == 0 && MP_PARSE_NODE_IS_STRUCT(pn)) {
        comp->compile_error_line = ((mp_parse_node_struct_t*)pn)->source_line;
    }
}

STATIC void compile_syntax_error(compiler_t *comp, mp_parse_node_t pn, const char *msg) {
    // only register the error if there has been no other error
    if (comp->compile_error == MP_OBJ_NULL) {
        comp->compile_error = mp_obj_new_exception_msg(&mp_type_SyntaxError, msg);
        compile_error_set_line(comp, pn);
    }
}

STATIC void compile_trailer_paren_helper(compiler_t *comp, mp_parse_node_t pn_arglist, bool is_method_call, int n_positional_extra);
STATIC void compile_comprehension(compiler_t *comp, mp_parse_node_struct_t *pns, scope_kind_t kind);
STATIC void compile_node(compiler_t *comp, mp_parse_node_t pn);

STATIC uint comp_next_label(compiler_t *comp) {
    return comp->next_label++;
}

STATIC void compile_increase_except_level(compiler_t *comp) {
    comp->cur_except_level += 1;
    if (comp->cur_except_level > comp->scope_cur->exc_stack_size) {
        comp->scope_cur->exc_stack_size = comp->cur_except_level;
    }
}

STATIC void compile_decrease_except_level(compiler_t *comp) {
    assert(comp->cur_except_level > 0);
    comp->cur_except_level -= 1;
}

STATIC scope_t *scope_new_and_link(compiler_t *comp, scope_kind_t kind, mp_parse_node_t pn, uint emit_options) {
    scope_t *scope = scope_new(kind, pn, comp->source_file, emit_options);
    scope->parent = comp->scope_cur;
    scope->next = NULL;
    if (comp->scope_head == NULL) {
        comp->scope_head = scope;
    } else {
        scope_t *s = comp->scope_head;
        while (s->next != NULL) {
            s = s->next;
        }
        s->next = scope;
    }
    return scope;
}

typedef void (*apply_list_fun_t)(compiler_t *comp, mp_parse_node_t pn);

STATIC void apply_to_single_or_list(compiler_t *comp, mp_parse_node_t pn, pn_kind_t pn_list_kind, apply_list_fun_t f) {
    if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, pn_list_kind)) {
        mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn;
        int num_nodes = MP_PARSE_NODE_STRUCT_NUM_NODES(pns);
        for (int i = 0; i < num_nodes; i++) {
            f(comp, pns->nodes[i]);
        }
    } else if (!MP_PARSE_NODE_IS_NULL(pn)) {
        f(comp, pn);
    }
}

STATIC void compile_generic_all_nodes(compiler_t *comp, mp_parse_node_struct_t *pns) {
    int num_nodes = MP_PARSE_NODE_STRUCT_NUM_NODES(pns);
    for (int i = 0; i < num_nodes; i++) {
        compile_node(comp, pns->nodes[i]);
        if (comp->compile_error != MP_OBJ_NULL) {
            // add line info for the error in case it didn't have a line number
            compile_error_set_line(comp, pns->nodes[i]);
            return;
        }
    }
}

STATIC void compile_load_id(compiler_t *comp, qstr qst) {
    if (comp->pass == MP_PASS_SCOPE) {
        mp_emit_common_get_id_for_load(comp->scope_cur, qst);
    } else {
        #if NEED_METHOD_TABLE
        mp_emit_common_id_op(comp->emit, &comp->emit_method_table->load_id, comp->scope_cur, qst);
        #else
        mp_emit_common_id_op(comp->emit, &mp_emit_bc_method_table_load_id_ops, comp->scope_cur, qst);
        #endif
    }
}

STATIC void compile_store_id(compiler_t *comp, qstr qst) {
    if (comp->pass == MP_PASS_SCOPE) {
        mp_emit_common_get_id_for_modification(comp->scope_cur, qst);
    } else {
        #if NEED_METHOD_TABLE
        mp_emit_common_id_op(comp->emit, &comp->emit_method_table->store_id, comp->scope_cur, qst);
        #else
        mp_emit_common_id_op(comp->emit, &mp_emit_bc_method_table_store_id_ops, comp->scope_cur, qst);
        #endif
    }
}

STATIC void compile_delete_id(compiler_t *comp, qstr qst) {
    if (comp->pass == MP_PASS_SCOPE) {
        mp_emit_common_get_id_for_modification(comp->scope_cur, qst);
    } else {
        #if NEED_METHOD_TABLE
        mp_emit_common_id_op(comp->emit, &comp->emit_method_table->delete_id, comp->scope_cur, qst);
        #else
        mp_emit_common_id_op(comp->emit, &mp_emit_bc_method_table_delete_id_ops, comp->scope_cur, qst);
        #endif
    }
}

STATIC void c_tuple(compiler_t *comp, mp_parse_node_t pn, mp_parse_node_struct_t *pns_list) {
    int total = 0;
    if (!MP_PARSE_NODE_IS_NULL(pn)) {
        compile_node(comp, pn);
        total += 1;
    }
    if (pns_list != NULL) {
        int n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns_list);
        for (int i = 0; i < n; i++) {
            compile_node(comp, pns_list->nodes[i]);
        }
        total += n;
    }
    EMIT_ARG(build_tuple, total);
}

STATIC void compile_generic_tuple(compiler_t *comp, mp_parse_node_struct_t *pns) {
    // a simple tuple expression
    c_tuple(comp, MP_PARSE_NODE_NULL, pns);
}

STATIC void c_if_cond(compiler_t *comp, mp_parse_node_t pn, bool jump_if, int label) {
    if (mp_parse_node_is_const_false(pn)) {
        if (jump_if == false) {
            EMIT_ARG(jump, label);
        }
        return;
    } else if (mp_parse_node_is_const_true(pn)) {
        if (jump_if == true) {
            EMIT_ARG(jump, label);
        }
        return;
    } else if (MP_PARSE_NODE_IS_STRUCT(pn)) {
        mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn;
        int n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns);
        if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_or_test) {
            if (jump_if == false) {
            and_or_logic1:;
                uint label2 = comp_next_label(comp);
                for (int i = 0; i < n - 1; i++) {
                    c_if_cond(comp, pns->nodes[i], !jump_if, label2);
                }
                c_if_cond(comp, pns->nodes[n - 1], jump_if, label);
                EMIT_ARG(label_assign, label2);
            } else {
            and_or_logic2:
                for (int i = 0; i < n; i++) {
                    c_if_cond(comp, pns->nodes[i], jump_if, label);
                }
            }
            return;
        } else if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_and_test) {
            if (jump_if == false) {
                goto and_or_logic2;
            } else {
                goto and_or_logic1;
            }
        } else if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_not_test_2) {
            c_if_cond(comp, pns->nodes[0], !jump_if, label);
            return;
        } else if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_atom_paren) {
            // cond is something in parenthesis
            if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) {
                // empty tuple, acts as false for the condition
                if (jump_if == false) {
                    EMIT_ARG(jump, label);
                }
            } else {
                assert(MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_testlist_comp));
                // non-empty tuple, acts as true for the condition
                if (jump_if == true) {
                    EMIT_ARG(jump, label);
                }
            }
            return;
        }
    }

    // nothing special, fall back to default compiling for node and jump
    compile_node(comp, pn);
    EMIT_ARG(pop_jump_if, jump_if, label);
}

typedef enum { ASSIGN_STORE, ASSIGN_AUG_LOAD, ASSIGN_AUG_STORE } assign_kind_t;
STATIC void c_assign(compiler_t *comp, mp_parse_node_t pn, assign_kind_t kind);

STATIC void c_assign_atom_expr(compiler_t *comp, mp_parse_node_struct_t *pns, assign_kind_t assign_kind) {
    if (assign_kind != ASSIGN_AUG_STORE) {
        compile_node(comp, pns->nodes[0]);
    }

    if (MP_PARSE_NODE_IS_STRUCT(pns->nodes[1])) {
        mp_parse_node_struct_t *pns1 = (mp_parse_node_struct_t*)pns->nodes[1];
        if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_atom_expr_trailers) {
            int n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns1);
            if (assign_kind != ASSIGN_AUG_STORE) {
                for (int i = 0; i < n - 1; i++) {
                    compile_node(comp, pns1->nodes[i]);
                }
            }
            assert(MP_PARSE_NODE_IS_STRUCT(pns1->nodes[n - 1]));
            pns1 = (mp_parse_node_struct_t*)pns1->nodes[n - 1];
        }
        if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_trailer_bracket) {
            if (assign_kind == ASSIGN_AUG_STORE) {
                EMIT(rot_three);
                EMIT(store_subscr);
            } else {
                compile_node(comp, pns1->nodes[0]);
                if (assign_kind == ASSIGN_AUG_LOAD) {
                    EMIT(dup_top_two);
                    EMIT(load_subscr);
                } else {
                    EMIT(store_subscr);
                }
            }
        } else if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_trailer_period) {
            assert(MP_PARSE_NODE_IS_ID(pns1->nodes[0]));
            if (assign_kind == ASSIGN_AUG_LOAD) {
                EMIT(dup_top);
                EMIT_ARG(load_attr, MP_PARSE_NODE_LEAF_ARG(pns1->nodes[0]));
            } else {
                if (assign_kind == ASSIGN_AUG_STORE) {
                    EMIT(rot_two);
                }
                EMIT_ARG(store_attr, MP_PARSE_NODE_LEAF_ARG(pns1->nodes[0]));
            }
        } else {
            goto cannot_assign;
        }
    } else {
        goto cannot_assign;
    }

    return;

cannot_assign:
    compile_syntax_error(comp, (mp_parse_node_t)pns, "can't assign to expression");
}

// we need to allow for a caller passing in 1 initial node (node_head) followed by an array of nodes (nodes_tail)
STATIC void c_assign_tuple(compiler_t *comp, mp_parse_node_t node_head, uint num_tail, mp_parse_node_t *nodes_tail) {
    uint num_head = (node_head == MP_PARSE_NODE_NULL) ? 0 : 1;

    // look for star expression
    uint have_star_index = -1;
    if (num_head != 0 && MP_PARSE_NODE_IS_STRUCT_KIND(node_head, PN_star_expr)) {
        EMIT_ARG(unpack_ex, 0, num_tail);
        have_star_index = 0;
    }
    for (uint i = 0; i < num_tail; i++) {
        if (MP_PARSE_NODE_IS_STRUCT_KIND(nodes_tail[i], PN_star_expr)) {
            if (have_star_index == (uint)-1) {
                EMIT_ARG(unpack_ex, num_head + i, num_tail - i - 1);
                have_star_index = num_head + i;
            } else {
                compile_syntax_error(comp, nodes_tail[i], "multiple *x in assignment");
                return;
            }
        }
    }
    if (have_star_index == (uint)-1) {
        EMIT_ARG(unpack_sequence, num_head + num_tail);
    }
    if (num_head != 0) {
        if (0 == have_star_index) {
            c_assign(comp, ((mp_parse_node_struct_t*)node_head)->nodes[0], ASSIGN_STORE);
        } else {
            c_assign(comp, node_head, ASSIGN_STORE);
        }
    }
    for (uint i = 0; i < num_tail; i++) {
        if (num_head + i == have_star_index) {
            c_assign(comp, ((mp_parse_node_struct_t*)nodes_tail[i])->nodes[0], ASSIGN_STORE);
        } else {
            c_assign(comp, nodes_tail[i], ASSIGN_STORE);
        }
    }
}

// assigns top of stack to pn
STATIC void c_assign(compiler_t *comp, mp_parse_node_t pn, assign_kind_t assign_kind) {
    assert(!MP_PARSE_NODE_IS_NULL(pn));
    if (MP_PARSE_NODE_IS_LEAF(pn)) {
        if (MP_PARSE_NODE_IS_ID(pn)) {
            qstr arg = MP_PARSE_NODE_LEAF_ARG(pn);
            switch (assign_kind) {
                case ASSIGN_STORE:
                case ASSIGN_AUG_STORE:
                    compile_store_id(comp, arg);
                    break;
                case ASSIGN_AUG_LOAD:
                default:
                    compile_load_id(comp, arg);
                    break;
            }
        } else {
            goto cannot_assign;
        }
    } else {
        // pn must be a struct
        mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn;
        switch (MP_PARSE_NODE_STRUCT_KIND(pns)) {
            case PN_atom_expr_normal:
                // lhs is an index or attribute
                c_assign_atom_expr(comp, pns, assign_kind);
                break;

            case PN_testlist_star_expr:
            case PN_exprlist:
                // lhs is a tuple
                if (assign_kind != ASSIGN_STORE) {
                    goto cannot_assign;
                }
                c_assign_tuple(comp, MP_PARSE_NODE_NULL, MP_PARSE_NODE_STRUCT_NUM_NODES(pns), pns->nodes);
                break;

            case PN_atom_paren:
                // lhs is something in parenthesis
                if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) {
                    // empty tuple
                    goto cannot_assign;
                } else {
                    assert(MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_testlist_comp));
                    if (assign_kind != ASSIGN_STORE) {
                        goto cannot_assign;
                    }
                    pns = (mp_parse_node_struct_t*)pns->nodes[0];
                    goto testlist_comp;
                }
                break;

            case PN_atom_bracket:
                // lhs is something in brackets
                if (assign_kind != ASSIGN_STORE) {
                    goto cannot_assign;
                }
                if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) {
                    // empty list, assignment allowed
                    c_assign_tuple(comp, MP_PARSE_NODE_NULL, 0, NULL);
                } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_testlist_comp)) {
                    pns = (mp_parse_node_struct_t*)pns->nodes[0];
                    goto testlist_comp;
                } else {
                    // brackets around 1 item
                    c_assign_tuple(comp, pns->nodes[0], 0, NULL);
                }
                break;

            default:
                goto cannot_assign;
        }
        return;

        testlist_comp:
        // lhs is a sequence
        if (MP_PARSE_NODE_IS_STRUCT(pns->nodes[1])) {
            mp_parse_node_struct_t *pns2 = (mp_parse_node_struct_t*)pns->nodes[1];
            if (MP_PARSE_NODE_STRUCT_KIND(pns2) == PN_testlist_comp_3b) {
                // sequence of one item, with trailing comma
                assert(MP_PARSE_NODE_IS_NULL(pns2->nodes[0]));
                c_assign_tuple(comp, pns->nodes[0], 0, NULL);
            } else if (MP_PARSE_NODE_STRUCT_KIND(pns2) == PN_testlist_comp_3c) {
                // sequence of many items
                uint n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns2);
                c_assign_tuple(comp, pns->nodes[0], n, pns2->nodes);
            } else if (MP_PARSE_NODE_STRUCT_KIND(pns2) == PN_comp_for) {
                goto cannot_assign;
            } else {
                // sequence with 2 items
                goto sequence_with_2_items;
            }
        } else {
            // sequence with 2 items
            sequence_with_2_items:
            c_assign_tuple(comp, MP_PARSE_NODE_NULL, 2, pns->nodes);
        }
        return;
    }
    return;

    cannot_assign:
    compile_syntax_error(comp, pn, "can't assign to expression");
}

// stuff for lambda and comprehensions and generators:
//  if n_pos_defaults > 0 then there is a tuple on the stack with the positional defaults
//  if n_kw_defaults > 0 then there is a dictionary on the stack with the keyword defaults
//  if both exist, the tuple is above the dictionary (ie the first pop gets the tuple)
STATIC void close_over_variables_etc(compiler_t *comp, scope_t *this_scope, int n_pos_defaults, int n_kw_defaults) {
    assert(n_pos_defaults >= 0);
    assert(n_kw_defaults >= 0);

    // set flags
    if (n_kw_defaults > 0) {
        this_scope->scope_flags |= MP_SCOPE_FLAG_DEFKWARGS;
    }
    this_scope->num_def_pos_args = n_pos_defaults;

    // make closed over variables, if any
    // ensure they are closed over in the order defined in the outer scope (mainly to agree with CPython)
    int nfree = 0;
    if (comp->scope_cur->kind != SCOPE_MODULE) {
        for (int i = 0; i < comp->scope_cur->id_info_len; i++) {
            id_info_t *id = &comp->scope_cur->id_info[i];
            if (id->kind == ID_INFO_KIND_CELL || id->kind == ID_INFO_KIND_FREE) {
                for (int j = 0; j < this_scope->id_info_len; j++) {
                    id_info_t *id2 = &this_scope->id_info[j];
                    if (id2->kind == ID_INFO_KIND_FREE && id->qst == id2->qst) {
                        // in MicroPython we load closures using LOAD_FAST
                        EMIT_LOAD_FAST(id->qst, id->local_num);
                        nfree += 1;
                    }
                }
            }
        }
    }

    // make the function/closure
    if (nfree == 0) {
        EMIT_ARG(make_function, this_scope, n_pos_defaults, n_kw_defaults);
    } else {
        EMIT_ARG(make_closure, this_scope, nfree, n_pos_defaults, n_kw_defaults);
    }
}

STATIC void compile_funcdef_lambdef_param(compiler_t *comp, mp_parse_node_t pn) {
    // For efficiency of the code below we extract the parse-node kind here
    int pn_kind;
    if (MP_PARSE_NODE_IS_ID(pn)) {
        pn_kind = -1;
    } else {
        assert(MP_PARSE_NODE_IS_STRUCT(pn));
        pn_kind = MP_PARSE_NODE_STRUCT_KIND((mp_parse_node_struct_t*)pn);
    }

    if (pn_kind == PN_typedargslist_star || pn_kind == PN_varargslist_star) {
        comp->have_star = true;
        /* don't need to distinguish bare from named star
        mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn;
        if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) {
            // bare star
        } else {
            // named star
        }
        */

    } else if (pn_kind == PN_typedargslist_dbl_star || pn_kind == PN_varargslist_dbl_star) {
        // named double star
        // TODO do we need to do anything with this?

    } else {
        mp_parse_node_t pn_id;
        mp_parse_node_t pn_equal;
        if (pn_kind == -1) {
            // this parameter is just an id

            pn_id = pn;
            pn_equal = MP_PARSE_NODE_NULL;

        } else if (pn_kind == PN_typedargslist_name) {
            // this parameter has a colon and/or equal specifier

            mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn;
            pn_id = pns->nodes[0];
            //pn_colon = pns->nodes[1]; // unused
            pn_equal = pns->nodes[2];

        } else {
            assert(pn_kind == PN_varargslist_name); // should be
            // this parameter has an equal specifier

            mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn;
            pn_id = pns->nodes[0];
            pn_equal = pns->nodes[1];
        }

        if (MP_PARSE_NODE_IS_NULL(pn_equal)) {
            // this parameter does not have a default value

            // check for non-default parameters given after default parameters (allowed by parser, but not syntactically valid)
            if (!comp->have_star && comp->num_default_params != 0) {
                compile_syntax_error(comp, pn, "non-default argument follows default argument");
                return;
            }

        } else {
            // this parameter has a default value
            // in CPython, None (and True, False?) as default parameters are loaded with LOAD_NAME; don't understandy why

            if (comp->have_star) {
                comp->num_dict_params += 1;
                // in MicroPython we put the default dict parameters into a dictionary using the bytecode
                if (comp->num_dict_params == 1) {
                    // in MicroPython we put the default positional parameters into a tuple using the bytecode
                    // we need to do this here before we start building the map for the default keywords
                    if (comp->num_default_params > 0) {
                        EMIT_ARG(build_tuple, comp->num_default_params);
                    } else {
                        EMIT(load_null); // sentinel indicating empty default positional args
                    }
                    // first default dict param, so make the map
                    EMIT_ARG(build_map, 0);
                }

                // compile value then key, then store it to the dict
                compile_node(comp, pn_equal);
                EMIT_ARG(load_const_str, MP_PARSE_NODE_LEAF_ARG(pn_id));
                EMIT(store_map);
            } else {
                comp->num_default_params += 1;
                compile_node(comp, pn_equal);
            }
        }
    }
}

STATIC void compile_funcdef_lambdef(compiler_t *comp, scope_t *scope, mp_parse_node_t pn_params, pn_kind_t pn_list_kind) {
    // When we call compile_funcdef_lambdef_param below it can compile an arbitrary
    // expression for default arguments, which may contain a lambda.  The lambda will
    // call here in a nested way, so we must save and restore the relevant state.
    bool orig_have_star = comp->have_star;
    uint16_t orig_num_dict_params = comp->num_dict_params;
    uint16_t orig_num_default_params = comp->num_default_params;

    // compile default parameters
    comp->have_star = false;
    comp->num_dict_params = 0;
    comp->num_default_params = 0;
    apply_to_single_or_list(comp, pn_params, pn_list_kind, compile_funcdef_lambdef_param);

    if (comp->compile_error != MP_OBJ_NULL) {
        return;
    }

    // in MicroPython we put the default positional parameters into a tuple using the bytecode
    // the default keywords args may have already made the tuple; if not, do it now
    if (comp->num_default_params > 0 && comp->num_dict_params == 0) {
        EMIT_ARG(build_tuple, comp->num_default_params);
        EMIT(load_null); // sentinel indicating empty default keyword args
    }

    // make the function
    close_over_variables_etc(comp, scope, comp->num_default_params, comp->num_dict_params);

    // restore state
    comp->have_star = orig_have_star;
    comp->num_dict_params = orig_num_dict_params;
    comp->num_default_params = orig_num_default_params;
}

// leaves function object on stack
// returns function name
STATIC qstr compile_funcdef_helper(compiler_t *comp, mp_parse_node_struct_t *pns, uint emit_options) {
    if (comp->pass == MP_PASS_SCOPE) {
        // create a new scope for this function
        scope_t *s = scope_new_and_link(comp, SCOPE_FUNCTION, (mp_parse_node_t)pns, emit_options);
        // store the function scope so the compiling function can use it at each pass
        pns->nodes[4] = (mp_parse_node_t)s;
    }

    // get the scope for this function
    scope_t *fscope = (scope_t*)pns->nodes[4];

    // compile the function definition
    compile_funcdef_lambdef(comp, fscope, pns->nodes[1], PN_typedargslist);

    // return its name (the 'f' in "def f(...):")
    return fscope->simple_name;
}

// leaves class object on stack
// returns class name
STATIC qstr compile_classdef_helper(compiler_t *comp, mp_parse_node_struct_t *pns, uint emit_options) {
    if (comp->pass == MP_PASS_SCOPE) {
        // create a new scope for this class
        scope_t *s = scope_new_and_link(comp, SCOPE_CLASS, (mp_parse_node_t)pns, emit_options);
        // store the class scope so the compiling function can use it at each pass
        pns->nodes[3] = (mp_parse_node_t)s;
    }

    EMIT(load_build_class);

    // scope for this class
    scope_t *cscope = (scope_t*)pns->nodes[3];

    // compile the class
    close_over_variables_etc(comp, cscope, 0, 0);

    // get its name
    EMIT_ARG(load_const_str, cscope->simple_name);

    // nodes[1] has parent classes, if any
    // empty parenthesis (eg class C():) gets here as an empty PN_classdef_2 and needs special handling
    mp_parse_node_t parents = pns->nodes[1];
    if (MP_PARSE_NODE_IS_STRUCT_KIND(parents, PN_classdef_2)) {
        parents = MP_PARSE_NODE_NULL;
    }
    compile_trailer_paren_helper(comp, parents, false, 2);

    // return its name (the 'C' in class C(...):")
    return cscope->simple_name;
}

// returns true if it was a built-in decorator (even if the built-in had an error)
STATIC bool compile_built_in_decorator(compiler_t *comp, int name_len, mp_parse_node_t *name_nodes, uint *emit_options) {
    if (MP_PARSE_NODE_LEAF_ARG(name_nodes[0]) != MP_QSTR_micropython) {
        return false;
    }

    if (name_len != 2) {
        compile_syntax_error(comp, name_nodes[0], "invalid micropython decorator");
        return true;
    }

    qstr attr = MP_PARSE_NODE_LEAF_ARG(name_nodes[1]);
    if (attr == MP_QSTR_bytecode) {
        *emit_options = MP_EMIT_OPT_BYTECODE;
#if MICROPY_EMIT_NATIVE
    } else if (attr == MP_QSTR_native) {
        *emit_options = MP_EMIT_OPT_NATIVE_PYTHON;
    } else if (attr == MP_QSTR_viper) {
        *emit_options = MP_EMIT_OPT_VIPER;
#endif
    #if MICROPY_EMIT_INLINE_ASM
    } else if (attr == ASM_DECORATOR_QSTR) {
        *emit_options = MP_EMIT_OPT_ASM;
    #endif
    } else {
        compile_syntax_error(comp, name_nodes[1], "invalid micropython decorator");
    }

    return true;
}

STATIC void compile_decorated(compiler_t *comp, mp_parse_node_struct_t *pns) {
    // get the list of decorators
    mp_parse_node_t *nodes;
    int n = mp_parse_node_extract_list(&pns->nodes[0], PN_decorators, &nodes);

    // inherit emit options for this function/class definition
    uint emit_options = comp->scope_cur->emit_options;

    // compile each decorator
    int num_built_in_decorators = 0;
    for (int i = 0; i < n; i++) {
        assert(MP_PARSE_NODE_IS_STRUCT_KIND(nodes[i], PN_decorator)); // should be
        mp_parse_node_struct_t *pns_decorator = (mp_parse_node_struct_t*)nodes[i];

        // nodes[0] contains the decorator function, which is a dotted name
        mp_parse_node_t *name_nodes;
        int name_len = mp_parse_node_extract_list(&pns_decorator->nodes[0], PN_dotted_name, &name_nodes);

        // check for built-in decorators
        if (compile_built_in_decorator(comp, name_len, name_nodes, &emit_options)) {
            // this was a built-in
            num_built_in_decorators += 1;

        } else {
            // not a built-in, compile normally

            // compile the decorator function
            compile_node(comp, name_nodes[0]);
            for (int j = 1; j < name_len; j++) {
                assert(MP_PARSE_NODE_IS_ID(name_nodes[j])); // should be
                EMIT_ARG(load_attr, MP_PARSE_NODE_LEAF_ARG(name_nodes[j]));
            }

            // nodes[1] contains arguments to the decorator function, if any
            if (!MP_PARSE_NODE_IS_NULL(pns_decorator->nodes[1])) {
                // call the decorator function with the arguments in nodes[1]
                compile_node(comp, pns_decorator->nodes[1]);
            }
        }
    }

    // compile the body (funcdef, async funcdef or classdef) and get its name
    mp_parse_node_struct_t *pns_body = (mp_parse_node_struct_t*)pns->nodes[1];
    qstr body_name = 0;
    if (MP_PARSE_NODE_STRUCT_KIND(pns_body) == PN_funcdef) {
        body_name = compile_funcdef_helper(comp, pns_body, emit_options);
    #if MICROPY_PY_ASYNC_AWAIT
    } else if (MP_PARSE_NODE_STRUCT_KIND(pns_body) == PN_async_funcdef) {
        assert(MP_PARSE_NODE_IS_STRUCT(pns_body->nodes[0]));
        mp_parse_node_struct_t *pns0 = (mp_parse_node_struct_t*)pns_body->nodes[0];
        body_name = compile_funcdef_helper(comp, pns0, emit_options);
        scope_t *fscope = (scope_t*)pns0->nodes[4];
        fscope->scope_flags |= MP_SCOPE_FLAG_GENERATOR;
    #endif
    } else {
        assert(MP_PARSE_NODE_STRUCT_KIND(pns_body) == PN_classdef); // should be
        body_name = compile_classdef_helper(comp, pns_body, emit_options);
    }

    // call each decorator
    for (int i = 0; i < n - num_built_in_decorators; i++) {
        EMIT_ARG(call_function, 1, 0, 0);
    }

    // store func/class object into name
    compile_store_id(comp, body_name);
}

STATIC void compile_funcdef(compiler_t *comp, mp_parse_node_struct_t *pns) {
    qstr fname = compile_funcdef_helper(comp, pns, comp->scope_cur->emit_options);
    // store function object into function name
    compile_store_id(comp, fname);
}

STATIC void c_del_stmt(compiler_t *comp, mp_parse_node_t pn) {
    if (MP_PARSE_NODE_IS_ID(pn)) {
        compile_delete_id(comp, MP_PARSE_NODE_LEAF_ARG(pn));
    } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_atom_expr_normal)) {
        mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn;

        compile_node(comp, pns->nodes[0]); // base of the atom_expr_normal node

        if (MP_PARSE_NODE_IS_STRUCT(pns->nodes[1])) {
            mp_parse_node_struct_t *pns1 = (mp_parse_node_struct_t*)pns->nodes[1];
            if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_atom_expr_trailers) {
                int n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns1);
                for (int i = 0; i < n - 1; i++) {
                    compile_node(comp, pns1->nodes[i]);
                }
                assert(MP_PARSE_NODE_IS_STRUCT(pns1->nodes[n - 1]));
                pns1 = (mp_parse_node_struct_t*)pns1->nodes[n - 1];
            }
            if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_trailer_bracket) {
                compile_node(comp, pns1->nodes[0]);
                EMIT(delete_subscr);
            } else if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_trailer_period) {
                assert(MP_PARSE_NODE_IS_ID(pns1->nodes[0]));
                EMIT_ARG(delete_attr, MP_PARSE_NODE_LEAF_ARG(pns1->nodes[0]));
            } else {
                goto cannot_delete;
            }
        } else {
            goto cannot_delete;
        }

    } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_atom_paren)) {
        pn = ((mp_parse_node_struct_t*)pn)->nodes[0];
        if (MP_PARSE_NODE_IS_NULL(pn)) {
            goto cannot_delete;
        } else {
            assert(MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_testlist_comp));
            mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn;
            // TODO perhaps factorise testlist_comp code with other uses of PN_testlist_comp

            if (MP_PARSE_NODE_IS_STRUCT(pns->nodes[1])) {
                mp_parse_node_struct_t *pns1 = (mp_parse_node_struct_t*)pns->nodes[1];
                if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_testlist_comp_3b) {
                    // sequence of one item, with trailing comma
                    assert(MP_PARSE_NODE_IS_NULL(pns1->nodes[0]));
                    c_del_stmt(comp, pns->nodes[0]);
                } else if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_testlist_comp_3c) {
                    // sequence of many items
                    int n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns1);
                    c_del_stmt(comp, pns->nodes[0]);
                    for (int i = 0; i < n; i++) {
                        c_del_stmt(comp, pns1->nodes[i]);
                    }
                } else if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_comp_for) {
                    goto cannot_delete;
                } else {
                    // sequence with 2 items
                    goto sequence_with_2_items;
                }
            } else {
                // sequence with 2 items
                sequence_with_2_items:
                c_del_stmt(comp, pns->nodes[0]);
                c_del_stmt(comp, pns->nodes[1]);
            }
        }
    } else {
        // some arbitrary statement that we can't delete (eg del 1)
        goto cannot_delete;
    }

    return;

cannot_delete:
    compile_syntax_error(comp, (mp_parse_node_t)pn, "can't delete expression");
}

STATIC void compile_del_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
    apply_to_single_or_list(comp, pns->nodes[0], PN_exprlist, c_del_stmt);
}

STATIC void compile_break_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
    if (comp->break_label == INVALID_LABEL) {
        compile_syntax_error(comp, (mp_parse_node_t)pns, "'break' outside loop");
    }
    assert(comp->cur_except_level >= comp->break_continue_except_level);
    EMIT_ARG(break_loop, comp->break_label, comp->cur_except_level - comp->break_continue_except_level);
}

STATIC void compile_continue_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
    if (comp->continue_label == INVALID_LABEL) {
        compile_syntax_error(comp, (mp_parse_node_t)pns, "'continue' outside loop");
    }
    assert(comp->cur_except_level >= comp->break_continue_except_level);
    EMIT_ARG(continue_loop, comp->continue_label, comp->cur_except_level - comp->break_continue_except_level);
}

STATIC void compile_return_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
    if (comp->scope_cur->kind != SCOPE_FUNCTION) {
        compile_syntax_error(comp, (mp_parse_node_t)pns, "'return' outside function");
        return;
    }
    if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) {
        // no argument to 'return', so return None
        EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
    } else if (MICROPY_COMP_RETURN_IF_EXPR
        && MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_test_if_expr)) {
        // special case when returning an if-expression; to match CPython optimisation
        mp_parse_node_struct_t *pns_test_if_expr = (mp_parse_node_struct_t*)pns->nodes[0];
        mp_parse_node_struct_t *pns_test_if_else = (mp_parse_node_struct_t*)pns_test_if_expr->nodes[1];

        uint l_fail = comp_next_label(comp);
        c_if_cond(comp, pns_test_if_else->nodes[0], false, l_fail); // condition
        compile_node(comp, pns_test_if_expr->nodes[0]); // success value
        EMIT(return_value);
        EMIT_ARG(label_assign, l_fail);
        compile_node(comp, pns_test_if_else->nodes[1]); // failure value
    } else {
        compile_node(comp, pns->nodes[0]);
    }
    EMIT(return_value);
}

STATIC void compile_yield_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
    compile_node(comp, pns->nodes[0]);
    EMIT(pop_top);
}

STATIC void compile_raise_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
    if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) {
        // raise
        EMIT_ARG(raise_varargs, 0);
    } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_raise_stmt_arg)) {
        // raise x from y
        pns = (mp_parse_node_struct_t*)pns->nodes[0];
        compile_node(comp, pns->nodes[0]);
        compile_node(comp, pns->nodes[1]);
        EMIT_ARG(raise_varargs, 2);
    } else {
        // raise x
        compile_node(comp, pns->nodes[0]);
        EMIT_ARG(raise_varargs, 1);
    }
}

// q_base holds the base of the name
// eg   a -> q_base=a
//      a.b.c -> q_base=a
STATIC void do_import_name(compiler_t *comp, mp_parse_node_t pn, qstr *q_base) {
    bool is_as = false;
    if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_dotted_as_name)) {
        mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn;
        // a name of the form x as y; unwrap it
        *q_base = MP_PARSE_NODE_LEAF_ARG(pns->nodes[1]);
        pn = pns->nodes[0];
        is_as = true;
    }
    if (MP_PARSE_NODE_IS_NULL(pn)) {
        // empty name (eg, from . import x)
        *q_base = MP_QSTR_;
        EMIT_ARG(import_name, MP_QSTR_); // import the empty string
    } else if (MP_PARSE_NODE_IS_ID(pn)) {
        // just a simple name
        qstr q_full = MP_PARSE_NODE_LEAF_ARG(pn);
        if (!is_as) {
            *q_base = q_full;
        }
        EMIT_ARG(import_name, q_full);
    } else {
        assert(MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_dotted_name)); // should be
        mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn;
        {
            // a name of the form a.b.c
            if (!is_as) {
                *q_base = MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]);
            }
            int n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns);
            int len = n - 1;
            for (int i = 0; i < n; i++) {
                len += qstr_len(MP_PARSE_NODE_LEAF_ARG(pns->nodes[i]));
            }
            byte *q_ptr;
            byte *str_dest = qstr_build_start(len, &q_ptr);
            for (int i = 0; i < n; i++) {
                if (i > 0) {
                    *str_dest++ = '.';
                }
                size_t str_src_len;
                const byte *str_src = qstr_data(MP_PARSE_NODE_LEAF_ARG(pns->nodes[i]), &str_src_len);
                memcpy(str_dest, str_src, str_src_len);
                str_dest += str_src_len;
            }
            qstr q_full = qstr_build_end(q_ptr);
            EMIT_ARG(import_name, q_full);
            if (is_as) {
                for (int i = 1; i < n; i++) {
                    EMIT_ARG(load_attr, MP_PARSE_NODE_LEAF_ARG(pns->nodes[i]));
                }
            }
        }
    }
}

STATIC void compile_dotted_as_name(compiler_t *comp, mp_parse_node_t pn) {
    EMIT_ARG(load_const_small_int, 0); // level 0 import
    EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); // not importing from anything
    qstr q_base;
    do_import_name(comp, pn, &q_base);
    compile_store_id(comp, q_base);
}

STATIC void compile_import_name(compiler_t *comp, mp_parse_node_struct_t *pns) {
    apply_to_single_or_list(comp, pns->nodes[0], PN_dotted_as_names, compile_dotted_as_name);
}

STATIC void compile_import_from(compiler_t *comp, mp_parse_node_struct_t *pns) {
    mp_parse_node_t pn_import_source = pns->nodes[0];

    // extract the preceding .'s (if any) for a relative import, to compute the import level
    uint import_level = 0;
    do {
        mp_parse_node_t pn_rel;
        if (MP_PARSE_NODE_IS_TOKEN(pn_import_source) || MP_PARSE_NODE_IS_STRUCT_KIND(pn_import_source, PN_one_or_more_period_or_ellipsis)) {
            // This covers relative imports with dots only like "from .. import"
            pn_rel = pn_import_source;
            pn_import_source = MP_PARSE_NODE_NULL;
        } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pn_import_source, PN_import_from_2b)) {
            // This covers relative imports starting with dot(s) like "from .foo import"
            mp_parse_node_struct_t *pns_2b = (mp_parse_node_struct_t*)pn_import_source;
            pn_rel = pns_2b->nodes[0];
            pn_import_source = pns_2b->nodes[1];
            assert(!MP_PARSE_NODE_IS_NULL(pn_import_source)); // should not be
        } else {
            // Not a relative import
            break;
        }

        // get the list of . and/or ...'s
        mp_parse_node_t *nodes;
        int n = mp_parse_node_extract_list(&pn_rel, PN_one_or_more_period_or_ellipsis, &nodes);

        // count the total number of .'s
        for (int i = 0; i < n; i++) {
            if (MP_PARSE_NODE_IS_TOKEN_KIND(nodes[i], MP_TOKEN_DEL_PERIOD)) {
                import_level++;
            } else {
                // should be an MP_TOKEN_ELLIPSIS
                import_level += 3;
            }
        }
    } while (0);

    if (MP_PARSE_NODE_IS_TOKEN_KIND(pns->nodes[1], MP_TOKEN_OP_STAR)) {
        EMIT_ARG(load_const_small_int, import_level);

        // build the "fromlist" tuple
        EMIT_ARG(load_const_str, MP_QSTR__star_);
        EMIT_ARG(build_tuple, 1);

        // do the import
        qstr dummy_q;
        do_import_name(comp, pn_import_source, &dummy_q);
        EMIT(import_star);

    } else {
        EMIT_ARG(load_const_small_int, import_level);

        // build the "fromlist" tuple
        mp_parse_node_t *pn_nodes;
        int n = mp_parse_node_extract_list(&pns->nodes[1], PN_import_as_names, &pn_nodes);
        for (int i = 0; i < n; i++) {
            assert(MP_PARSE_NODE_IS_STRUCT_KIND(pn_nodes[i], PN_import_as_name));
            mp_parse_node_struct_t *pns3 = (mp_parse_node_struct_t*)pn_nodes[i];
            qstr id2 = MP_PARSE_NODE_LEAF_ARG(pns3->nodes[0]); // should be id
            EMIT_ARG(load_const_str, id2);
        }
        EMIT_ARG(build_tuple, n);

        // do the import
        qstr dummy_q;
        do_import_name(comp, pn_import_source, &dummy_q);
        for (int i = 0; i < n; i++) {
            assert(MP_PARSE_NODE_IS_STRUCT_KIND(pn_nodes[i], PN_import_as_name));
            mp_parse_node_struct_t *pns3 = (mp_parse_node_struct_t*)pn_nodes[i];
            qstr id2 = MP_PARSE_NODE_LEAF_ARG(pns3->nodes[0]); // should be id
            EMIT_ARG(import_from, id2);
            if (MP_PARSE_NODE_IS_NULL(pns3->nodes[1])) {
                compile_store_id(comp, id2);
            } else {
                compile_store_id(comp, MP_PARSE_NODE_LEAF_ARG(pns3->nodes[1]));
            }
        }
        EMIT(pop_top);
    }
}

STATIC void compile_declare_global(compiler_t *comp, mp_parse_node_t pn, qstr qst) {
    bool added;
    id_info_t *id_info = scope_find_or_add_id(comp->scope_cur, qst, &added);
    if (!added && id_info->kind != ID_INFO_KIND_GLOBAL_EXPLICIT) {
        compile_syntax_error(comp, pn, "identifier redefined as global");
        return;
    }
    id_info->kind = ID_INFO_KIND_GLOBAL_EXPLICIT;

    // if the id exists in the global scope, set its kind to EXPLICIT_GLOBAL
    id_info = scope_find_global(comp->scope_cur, qst);
    if (id_info != NULL) {
        id_info->kind = ID_INFO_KIND_GLOBAL_EXPLICIT;
    }
}

STATIC void compile_global_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
    if (comp->pass == MP_PASS_SCOPE) {
        mp_parse_node_t *nodes;
        int n = mp_parse_node_extract_list(&pns->nodes[0], PN_name_list, &nodes);
        for (int i = 0; i < n; i++) {
            compile_declare_global(comp, (mp_parse_node_t)pns, MP_PARSE_NODE_LEAF_ARG(nodes[i]));
        }
    }
}

STATIC void compile_declare_nonlocal(compiler_t *comp, mp_parse_node_t pn, qstr qst) {
    bool added;
    id_info_t *id_info = scope_find_or_add_id(comp->scope_cur, qst, &added);
    if (added) {
        scope_find_local_and_close_over(comp->scope_cur, id_info, qst);
        if (id_info->kind == ID_INFO_KIND_GLOBAL_IMPLICIT) {
            compile_syntax_error(comp, pn, "no binding for nonlocal found");
        }
    } else if (id_info->kind != ID_INFO_KIND_FREE) {
        compile_syntax_error(comp, pn, "identifier redefined as nonlocal");
    }
}

STATIC void compile_nonlocal_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
    if (comp->pass == MP_PASS_SCOPE) {
        if (comp->scope_cur->kind == SCOPE_MODULE) {
            compile_syntax_error(comp, (mp_parse_node_t)pns, "can't declare nonlocal in outer code");
            return;
        }
        mp_parse_node_t *nodes;
        int n = mp_parse_node_extract_list(&pns->nodes[0], PN_name_list, &nodes);
        for (int i = 0; i < n; i++) {
            compile_declare_nonlocal(comp, (mp_parse_node_t)pns, MP_PARSE_NODE_LEAF_ARG(nodes[i]));
        }
    }
}

STATIC void compile_assert_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
    // with optimisations enabled we don't compile assertions
    if (MP_STATE_VM(mp_optimise_value) != 0) {
        return;
    }

    uint l_end = comp_next_label(comp);
    c_if_cond(comp, pns->nodes[0], true, l_end);
    EMIT_LOAD_GLOBAL(MP_QSTR_AssertionError); // we load_global instead of load_id, to be consistent with CPython
    if (!MP_PARSE_NODE_IS_NULL(pns->nodes[1])) {
        // assertion message
        compile_node(comp, pns->nodes[1]);
        EMIT_ARG(call_function, 1, 0, 0);
    }
    EMIT_ARG(raise_varargs, 1);
    EMIT_ARG(label_assign, l_end);
}

STATIC void compile_if_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
    uint l_end = comp_next_label(comp);

    // optimisation: don't emit anything when "if False"
    if (!mp_parse_node_is_const_false(pns->nodes[0])) {
        uint l_fail = comp_next_label(comp);
        c_if_cond(comp, pns->nodes[0], false, l_fail); // if condition

        compile_node(comp, pns->nodes[1]); // if block

        // optimisation: skip everything else when "if True"
        if (mp_parse_node_is_const_true(pns->nodes[0])) {
            goto done;
        }

        if (
            // optimisation: don't jump over non-existent elif/else blocks
            !(MP_PARSE_NODE_IS_NULL(pns->nodes[2]) && MP_PARSE_NODE_IS_NULL(pns->nodes[3]))
            // optimisation: don't jump if last instruction was return
            && !EMIT(last_emit_was_return_value)
            ) {
            // jump over elif/else blocks
            EMIT_ARG(jump, l_end);
        }

        EMIT_ARG(label_assign, l_fail);
    }

    // compile elif blocks (if any)
    mp_parse_node_t *pn_elif;
    int n_elif = mp_parse_node_extract_list(&pns->nodes[2], PN_if_stmt_elif_list, &pn_elif);
    for (int i = 0; i < n_elif; i++) {
        assert(MP_PARSE_NODE_IS_STRUCT_KIND(pn_elif[i], PN_if_stmt_elif)); // should be
        mp_parse_node_struct_t *pns_elif = (mp_parse_node_struct_t*)pn_elif[i];

        // optimisation: don't emit anything when "if False"
        if (!mp_parse_node_is_const_false(pns_elif->nodes[0])) {
            uint l_fail = comp_next_label(comp);
            c_if_cond(comp, pns_elif->nodes[0], false, l_fail); // elif condition

            compile_node(comp, pns_elif->nodes[1]); // elif block

            // optimisation: skip everything else when "elif True"
            if (mp_parse_node_is_const_true(pns_elif->nodes[0])) {
                goto done;
            }

            // optimisation: don't jump if last instruction was return
            if (!EMIT(last_emit_was_return_value)) {
                EMIT_ARG(jump, l_end);
            }
            EMIT_ARG(label_assign, l_fail);
        }
    }

    // compile else block
    compile_node(comp, pns->nodes[3]); // can be null

done:
    EMIT_ARG(label_assign, l_end);
}

#define START_BREAK_CONTINUE_BLOCK \
    uint16_t old_break_label = comp->break_label; \
    uint16_t old_continue_label = comp->continue_label; \
    uint16_t old_break_continue_except_level = comp->break_continue_except_level; \
    uint break_label = comp_next_label(comp); \
    uint continue_label = comp_next_label(comp); \
    comp->break_label = break_label; \
    comp->continue_label = continue_label; \
    comp->break_continue_except_level = comp->cur_except_level;

#define END_BREAK_CONTINUE_BLOCK \
    comp->break_label = old_break_label; \
    comp->continue_label = old_continue_label; \
    comp->break_continue_except_level = old_break_continue_except_level;

STATIC void compile_while_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
    START_BREAK_CONTINUE_BLOCK

    if (!mp_parse_node_is_const_false(pns->nodes[0])) { // optimisation: don't emit anything for "while False"
        uint top_label = comp_next_label(comp);
        if (!mp_parse_node_is_const_true(pns->nodes[0])) { // optimisation: don't jump to cond for "while True"
            EMIT_ARG(jump, continue_label);
        }
        EMIT_ARG(label_assign, top_label);
        compile_node(comp, pns->nodes[1]); // body
        EMIT_ARG(label_assign, continue_label);
        c_if_cond(comp, pns->nodes[0], true, top_label); // condition
    }

    // break/continue apply to outer loop (if any) in the else block
    END_BREAK_CONTINUE_BLOCK

    compile_node(comp, pns->nodes[2]); // else

    EMIT_ARG(label_assign, break_label);
}

// This function compiles an optimised for-loop of the form:
//      for <var> in range(<start>, <end>, <step>):
//          <body>
//      else:
//          <else>
// <var> must be an identifier and <step> must be a small-int.
//
// Semantics of for-loop require:
//  - final failing value should not be stored in the loop variable
//  - if the loop never runs, the loop variable should never be assigned
//  - assignments to <var>, <end> or <step> in the body do not alter the loop
//    (<step> is a constant for us, so no need to worry about it changing)
//
// If <end> is a small-int, then the stack during the for-loop contains just
// the current value of <var>.  Otherwise, the stack contains <end> then the
// current value of <var>.
STATIC void compile_for_stmt_optimised_range(compiler_t *comp, mp_parse_node_t pn_var, mp_parse_node_t pn_start, mp_parse_node_t pn_end, mp_parse_node_t pn_step, mp_parse_node_t pn_body, mp_parse_node_t pn_else) {
    START_BREAK_CONTINUE_BLOCK

    uint top_label = comp_next_label(comp);
    uint entry_label = comp_next_label(comp);

    // put the end value on the stack if it's not a small-int constant
    bool end_on_stack = !MP_PARSE_NODE_IS_SMALL_INT(pn_end);
    if (end_on_stack) {
        compile_node(comp, pn_end);
    }

    // compile: start
    compile_node(comp, pn_start);

    EMIT_ARG(jump, entry_label);
    EMIT_ARG(label_assign, top_label);

    // duplicate next value and store it to var
    EMIT(dup_top);
    c_assign(comp, pn_var, ASSIGN_STORE);

    // compile body
    compile_node(comp, pn_body);

    EMIT_ARG(label_assign, continue_label);

    // compile: var + step
    compile_node(comp, pn_step);
    EMIT_ARG(binary_op, MP_BINARY_OP_INPLACE_ADD);

    EMIT_ARG(label_assign, entry_label);

    // compile: if var <cond> end: goto top
    if (end_on_stack) {
        EMIT(dup_top_two);
        EMIT(rot_two);
    } else {
        EMIT(dup_top);
        compile_node(comp, pn_end);
    }
    assert(MP_PARSE_NODE_IS_SMALL_INT(pn_step));
    if (MP_PARSE_NODE_LEAF_SMALL_INT(pn_step) >= 0) {
        EMIT_ARG(binary_op, MP_BINARY_OP_LESS);
    } else {
        EMIT_ARG(binary_op, MP_BINARY_OP_MORE);
    }
    EMIT_ARG(pop_jump_if, true, top_label);

    // break/continue apply to outer loop (if any) in the else block
    END_BREAK_CONTINUE_BLOCK

    // Compile the else block.  We must pop the iterator variables before
    // executing the else code because it may contain break/continue statements.
    uint end_label = 0;
    if (!MP_PARSE_NODE_IS_NULL(pn_else)) {
        // discard final value of "var", and possible "end" value
        EMIT(pop_top);
        if (end_on_stack) {
            EMIT(pop_top);
        }
        compile_node(comp, pn_else);
        end_label = comp_next_label(comp);
        EMIT_ARG(jump, end_label);
        EMIT_ARG(adjust_stack_size, 1 + end_on_stack);
    }

    EMIT_ARG(label_assign, break_label);

    // discard final value of var that failed the loop condition
    EMIT(pop_top);

    // discard <end> value if it's on the stack
    if (end_on_stack) {
        EMIT(pop_top);
    }

    if (!MP_PARSE_NODE_IS_NULL(pn_else)) {
        EMIT_ARG(label_assign, end_label);
    }
}

STATIC void compile_for_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
    // this bit optimises: for <x> in range(...), turning it into an explicitly incremented variable
    // this is actually slower, but uses no heap memory
    // for viper it will be much, much faster
    if (/*comp->scope_cur->emit_options == MP_EMIT_OPT_VIPER &&*/ MP_PARSE_NODE_IS_ID(pns->nodes[0]) && MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[1], PN_atom_expr_normal)) {
        mp_parse_node_struct_t *pns_it = (mp_parse_node_struct_t*)pns->nodes[1];
        if (MP_PARSE_NODE_IS_ID(pns_it->nodes[0])
            && MP_PARSE_NODE_LEAF_ARG(pns_it->nodes[0]) == MP_QSTR_range
            && MP_PARSE_NODE_STRUCT_KIND((mp_parse_node_struct_t*)pns_it->nodes[1]) == PN_trailer_paren) {
            mp_parse_node_t pn_range_args = ((mp_parse_node_struct_t*)pns_it->nodes[1])->nodes[0];
            mp_parse_node_t *args;
            int n_args = mp_parse_node_extract_list(&pn_range_args, PN_arglist, &args);
            mp_parse_node_t pn_range_start;
            mp_parse_node_t pn_range_end;
            mp_parse_node_t pn_range_step;
            bool optimize = false;
            if (1 <= n_args && n_args <= 3) {
                optimize = true;
                if (n_args == 1) {
                    pn_range_start = mp_parse_node_new_small_int(0);
                    pn_range_end = args[0];
                    pn_range_step = mp_parse_node_new_small_int(1);
                } else if (n_args == 2) {
                    pn_range_start = args[0];
                    pn_range_end = args[1];
                    pn_range_step = mp_parse_node_new_small_int(1);
                } else {
                    pn_range_start = args[0];
                    pn_range_end = args[1];
                    pn_range_step = args[2];
                    // the step must be a non-zero constant integer to do the optimisation
                    if (!MP_PARSE_NODE_IS_SMALL_INT(pn_range_step)
                        || MP_PARSE_NODE_LEAF_SMALL_INT(pn_range_step) == 0) {
                        optimize = false;
                    }
                }
                // arguments must be able to be compiled as standard expressions
                if (optimize && MP_PARSE_NODE_IS_STRUCT(pn_range_start)) {
                    int k = MP_PARSE_NODE_STRUCT_KIND((mp_parse_node_struct_t*)pn_range_start);
                    if (k == PN_arglist_star || k == PN_arglist_dbl_star || k == PN_argument) {
                        optimize = false;
                    }
                }
                if (optimize && MP_PARSE_NODE_IS_STRUCT(pn_range_end)) {
                    int k = MP_PARSE_NODE_STRUCT_KIND((mp_parse_node_struct_t*)pn_range_end);
                    if (k == PN_arglist_star || k == PN_arglist_dbl_star || k == PN_argument) {
                        optimize = false;
                    }
                }
            }
            if (optimize) {
                compile_for_stmt_optimised_range(comp, pns->nodes[0], pn_range_start, pn_range_end, pn_range_step, pns->nodes[2], pns->nodes[3]);
                return;
            }
        }
    }

    START_BREAK_CONTINUE_BLOCK
    comp->break_label |= MP_EMIT_BREAK_FROM_FOR;

    uint pop_label = comp_next_label(comp);

    compile_node(comp, pns->nodes[1]); // iterator
    EMIT_ARG(get_iter, true);
    EMIT_ARG(label_assign, continue_label);
    EMIT_ARG(for_iter, pop_label);
    c_assign(comp, pns->nodes[0], ASSIGN_STORE); // variable
    compile_node(comp, pns->nodes[2]); // body
    if (!EMIT(last_emit_was_return_value)) {
        EMIT_ARG(jump, continue_label);
    }
    EMIT_ARG(label_assign, pop_label);
    EMIT(for_iter_end);

    // break/continue apply to outer loop (if any) in the else block
    END_BREAK_CONTINUE_BLOCK

    compile_node(comp, pns->nodes[3]); // else (may be empty)

    EMIT_ARG(label_assign, break_label);
}

STATIC void compile_try_except(compiler_t *comp, mp_parse_node_t pn_body, int n_except, mp_parse_node_t *pn_excepts, mp_parse_node_t pn_else) {
    // setup code
    uint l1 = comp_next_label(comp);
    uint success_label = comp_next_label(comp);

    EMIT_ARG(setup_except, l1);
    compile_increase_except_level(comp);

    compile_node(comp, pn_body); // body
    EMIT(pop_block);
    EMIT_ARG(jump, success_label); // jump over exception handler

    EMIT_ARG(label_assign, l1); // start of exception handler
    EMIT(start_except_handler);

    // at this point the top of the stack contains the exception instance that was raised

    uint l2 = comp_next_label(comp);

    for (int i = 0; i < n_except; i++) {
        assert(MP_PARSE_NODE_IS_STRUCT_KIND(pn_excepts[i], PN_try_stmt_except)); // should be
        mp_parse_node_struct_t *pns_except = (mp_parse_node_struct_t*)pn_excepts[i];

        qstr qstr_exception_local = 0;
        uint end_finally_label = comp_next_label(comp);

        if (MP_PARSE_NODE_IS_NULL(pns_except->nodes[0])) {
            // this is a catch all exception handler
            if (i + 1 != n_except) {
                compile_syntax_error(comp, pn_excepts[i], "default 'except' must be last");
                compile_decrease_except_level(comp);
                return;
            }
        } else {
            // this exception handler requires a match to a certain type of exception
            mp_parse_node_t pns_exception_expr = pns_except->nodes[0];
            if (MP_PARSE_NODE_IS_STRUCT(pns_exception_expr)) {
                mp_parse_node_struct_t *pns3 = (mp_parse_node_struct_t*)pns_exception_expr;
                if (MP_PARSE_NODE_STRUCT_KIND(pns3) == PN_try_stmt_as_name) {
                    // handler binds the exception to a local
                    pns_exception_expr = pns3->nodes[0];
                    qstr_exception_local = MP_PARSE_NODE_LEAF_ARG(pns3->nodes[1]);
                }
            }
            EMIT(dup_top);
            compile_node(comp, pns_exception_expr);
            EMIT_ARG(binary_op, MP_BINARY_OP_EXCEPTION_MATCH);
            EMIT_ARG(pop_jump_if, false, end_finally_label);
        }

        // either discard or store the exception instance
        if (qstr_exception_local == 0) {
            EMIT(pop_top);
        } else {
            compile_store_id(comp, qstr_exception_local);
        }

        uint l3 = 0;
        if (qstr_exception_local != 0) {
            l3 = comp_next_label(comp);
            EMIT_ARG(setup_finally, l3);
            compile_increase_except_level(comp);
        }
        compile_node(comp, pns_except->nodes[1]);
        if (qstr_exception_local != 0) {
            EMIT(pop_block);
        }
        EMIT(pop_except);
        if (qstr_exception_local != 0) {
            EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
            EMIT_ARG(label_assign, l3);
            EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
            compile_store_id(comp, qstr_exception_local);
            compile_delete_id(comp, qstr_exception_local);

            compile_decrease_except_level(comp);
            EMIT(end_finally);
        }
        EMIT_ARG(jump, l2);
        EMIT_ARG(label_assign, end_finally_label);
        EMIT_ARG(adjust_stack_size, 1); // stack adjust for the exception instance
    }

    compile_decrease_except_level(comp);
    EMIT(end_finally);
    EMIT(end_except_handler);

    EMIT_ARG(label_assign, success_label);
    compile_node(comp, pn_else); // else block, can be null
    EMIT_ARG(label_assign, l2);
}

STATIC void compile_try_finally(compiler_t *comp, mp_parse_node_t pn_body, int n_except, mp_parse_node_t *pn_except, mp_parse_node_t pn_else, mp_parse_node_t pn_finally) {
    uint l_finally_block = comp_next_label(comp);

    EMIT_ARG(setup_finally, l_finally_block);
    compile_increase_except_level(comp);

    if (n_except == 0) {
        assert(MP_PARSE_NODE_IS_NULL(pn_else));
        EMIT_ARG(adjust_stack_size, 3); // stack adjust for possible UNWIND_JUMP state
        compile_node(comp, pn_body);
        EMIT_ARG(adjust_stack_size, -3);
    } else {
        compile_try_except(comp, pn_body, n_except, pn_except, pn_else);
    }
    EMIT(pop_block);
    EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
    EMIT_ARG(label_assign, l_finally_block);
    compile_node(comp, pn_finally);

    compile_decrease_except_level(comp);
    EMIT(end_finally);
}

STATIC void compile_try_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
    assert(MP_PARSE_NODE_IS_STRUCT(pns->nodes[1])); // should be
    {
        mp_parse_node_struct_t *pns2 = (mp_parse_node_struct_t*)pns->nodes[1];
        if (MP_PARSE_NODE_STRUCT_KIND(pns2) == PN_try_stmt_finally) {
            // just try-finally
            compile_try_finally(comp, pns->nodes[0], 0, NULL, MP_PARSE_NODE_NULL, pns2->nodes[0]);
        } else if (MP_PARSE_NODE_STRUCT_KIND(pns2) == PN_try_stmt_except_and_more) {
            // try-except and possibly else and/or finally
            mp_parse_node_t *pn_excepts;
            int n_except = mp_parse_node_extract_list(&pns2->nodes[0], PN_try_stmt_except_list, &pn_excepts);
            if (MP_PARSE_NODE_IS_NULL(pns2->nodes[2])) {
                // no finally
                compile_try_except(comp, pns->nodes[0], n_except, pn_excepts, pns2->nodes[1]);
            } else {
                // have finally
                compile_try_finally(comp, pns->nodes[0], n_except, pn_excepts, pns2->nodes[1], ((mp_parse_node_struct_t*)pns2->nodes[2])->nodes[0]);
            }
        } else {
            // just try-except
            mp_parse_node_t *pn_excepts;
            int n_except = mp_parse_node_extract_list(&pns->nodes[1], PN_try_stmt_except_list, &pn_excepts);
            compile_try_except(comp, pns->nodes[0], n_except, pn_excepts, MP_PARSE_NODE_NULL);
        }
    }
}

STATIC void compile_with_stmt_helper(compiler_t *comp, int n, mp_parse_node_t *nodes, mp_parse_node_t body) {
    if (n == 0) {
        // no more pre-bits, compile the body of the with
        compile_node(comp, body);
    } else {
        uint l_end = comp_next_label(comp);
        if (MICROPY_EMIT_NATIVE && comp->scope_cur->emit_options != MP_EMIT_OPT_BYTECODE) {
            // we need to allocate an extra label for the native emitter
            // it will use l_end+1 as an auxiliary label
            comp_next_label(comp);
        }
        if (MP_PARSE_NODE_IS_STRUCT_KIND(nodes[0], PN_with_item)) {
            // this pre-bit is of the form "a as b"
            mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)nodes[0];
            compile_node(comp, pns->nodes[0]);
            EMIT_ARG(setup_with, l_end);
            c_assign(comp, pns->nodes[1], ASSIGN_STORE);
        } else {
            // this pre-bit is just an expression
            compile_node(comp, nodes[0]);
            EMIT_ARG(setup_with, l_end);
            EMIT(pop_top);
        }
        compile_increase_except_level(comp);
        // compile additional pre-bits and the body
        compile_with_stmt_helper(comp, n - 1, nodes + 1, body);
        // finish this with block
        EMIT_ARG(with_cleanup, l_end);
        compile_decrease_except_level(comp);
        EMIT(end_finally);
    }
}

STATIC void compile_with_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
    // get the nodes for the pre-bit of the with (the a as b, c as d, ... bit)
    mp_parse_node_t *nodes;
    int n = mp_parse_node_extract_list(&pns->nodes[0], PN_with_stmt_list, &nodes);
    assert(n > 0);

    // compile in a nested fashion
    compile_with_stmt_helper(comp, n, nodes, pns->nodes[1]);
}

STATIC void compile_yield_from(compiler_t *comp) {
    EMIT_ARG(get_iter, false);
    EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
    EMIT(yield_from);
}

#if MICROPY_PY_ASYNC_AWAIT
STATIC void compile_await_object_method(compiler_t *comp, qstr method) {
    EMIT_ARG(load_method, method, false);
    EMIT_ARG(call_method, 0, 0, 0);
    compile_yield_from(comp);
}

STATIC void compile_async_for_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
    // comp->break_label |= MP_EMIT_BREAK_FROM_FOR;

    qstr context = MP_PARSE_NODE_LEAF_ARG(pns->nodes[1]);
    uint while_else_label = comp_next_label(comp);
    uint try_exception_label = comp_next_label(comp);
    uint try_else_label = comp_next_label(comp);
    uint try_finally_label = comp_next_label(comp);

    compile_node(comp, pns->nodes[1]); // iterator
    compile_await_object_method(comp, MP_QSTR___aiter__);
    compile_store_id(comp, context);

    START_BREAK_CONTINUE_BLOCK

    EMIT_ARG(label_assign, continue_label);

    EMIT_ARG(setup_except, try_exception_label);
    compile_increase_except_level(comp);

    compile_load_id(comp, context);
    compile_await_object_method(comp, MP_QSTR___anext__);
    c_assign(comp, pns->nodes[0], ASSIGN_STORE); // variable
    EMIT(pop_block);
    EMIT_ARG(jump, try_else_label);

    EMIT_ARG(label_assign, try_exception_label);
    EMIT(start_except_handler);
    EMIT(dup_top);
    EMIT_LOAD_GLOBAL(MP_QSTR_StopAsyncIteration);
    EMIT_ARG(binary_op, MP_BINARY_OP_EXCEPTION_MATCH);
    EMIT_ARG(pop_jump_if, false, try_finally_label);
    EMIT(pop_top); // pop exception instance
    EMIT(pop_except);
    EMIT_ARG(jump, while_else_label);

    EMIT_ARG(label_assign, try_finally_label);
    EMIT_ARG(adjust_stack_size, 1); // if we jump here, the exc is on the stack
    compile_decrease_except_level(comp);
    EMIT(end_finally);
    EMIT(end_except_handler);

    EMIT_ARG(label_assign, try_else_label);
    compile_node(comp, pns->nodes[2]); // body

    EMIT_ARG(jump, continue_label);
    // break/continue apply to outer loop (if any) in the else block
    END_BREAK_CONTINUE_BLOCK

    EMIT_ARG(label_assign, while_else_label);
    compile_node(comp, pns->nodes[3]); // else

    EMIT_ARG(label_assign, break_label);
}

STATIC void compile_async_with_stmt_helper(compiler_t *comp, int n, mp_parse_node_t *nodes, mp_parse_node_t body) {
    if (n == 0) {
        // no more pre-bits, compile the body of the with
        compile_node(comp, body);
    } else {
        uint try_exception_label = comp_next_label(comp);
        uint no_reraise_label = comp_next_label(comp);
        uint try_else_label = comp_next_label(comp);
        uint end_label = comp_next_label(comp);
        qstr context;

        if (MP_PARSE_NODE_IS_STRUCT_KIND(nodes[0], PN_with_item)) {
            // this pre-bit is of the form "a as b"
            mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)nodes[0];
            compile_node(comp, pns->nodes[0]);
            context = MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]);
            compile_store_id(comp, context);
            compile_load_id(comp, context);
            compile_await_object_method(comp, MP_QSTR___aenter__);
            c_assign(comp, pns->nodes[1], ASSIGN_STORE);
        } else {
            // this pre-bit is just an expression
            compile_node(comp, nodes[0]);
            context = MP_PARSE_NODE_LEAF_ARG(nodes[0]);
            compile_store_id(comp, context);
            compile_load_id(comp, context);
            compile_await_object_method(comp, MP_QSTR___aenter__);
            EMIT(pop_top);
        }

        compile_load_id(comp, context);
        EMIT_ARG(load_method, MP_QSTR___aexit__, false);

        EMIT_ARG(setup_except, try_exception_label);
        compile_increase_except_level(comp);
        // compile additional pre-bits and the body
        compile_async_with_stmt_helper(comp, n - 1, nodes + 1, body);
        // finish this with block
        EMIT(pop_block);
        EMIT_ARG(jump, try_else_label); // jump over exception handler

        EMIT_ARG(label_assign, try_exception_label); // start of exception handler
        EMIT(start_except_handler);

        // at this point the stack contains: ..., __aexit__, self, exc
        EMIT(dup_top);
        #if MICROPY_CPYTHON_COMPAT
        EMIT_ARG(load_attr, MP_QSTR___class__); // get type(exc)
        #else
        compile_load_id(comp, MP_QSTR_type);
        EMIT(rot_two);
        EMIT_ARG(call_function, 1, 0, 0); // get type(exc)
        #endif
        EMIT(rot_two);
        EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE); // dummy traceback value
        // at this point the stack contains: ..., __aexit__, self, type(exc), exc, None
        EMIT_ARG(call_method, 3, 0, 0);

        compile_yield_from(comp);
        EMIT_ARG(pop_jump_if, true, no_reraise_label);
        EMIT_ARG(raise_varargs, 0);

        EMIT_ARG(label_assign, no_reraise_label);
        EMIT(pop_except);
        EMIT_ARG(jump, end_label);

        EMIT_ARG(adjust_stack_size, 3); // adjust for __aexit__, self, exc
        compile_decrease_except_level(comp);
        EMIT(end_finally);
        EMIT(end_except_handler);

        EMIT_ARG(label_assign, try_else_label); // start of try-else handler
        EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
        EMIT(dup_top);
        EMIT(dup_top);
        EMIT_ARG(call_method, 3, 0, 0);
        compile_yield_from(comp);
        EMIT(pop_top);

        EMIT_ARG(label_assign, end_label);

    }
}

STATIC void compile_async_with_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
    // get the nodes for the pre-bit of the with (the a as b, c as d, ... bit)
    mp_parse_node_t *nodes;
    int n = mp_parse_node_extract_list(&pns->nodes[0], PN_with_stmt_list, &nodes);
    assert(n > 0);

    // compile in a nested fashion
    compile_async_with_stmt_helper(comp, n, nodes, pns->nodes[1]);
}

STATIC void compile_async_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
    assert(MP_PARSE_NODE_IS_STRUCT(pns->nodes[0]));
    mp_parse_node_struct_t *pns0 = (mp_parse_node_struct_t*)pns->nodes[0];
    if (MP_PARSE_NODE_STRUCT_KIND(pns0) == PN_funcdef) {
        // async def
        compile_funcdef(comp, pns0);
        scope_t *fscope = (scope_t*)pns0->nodes[4];
        fscope->scope_flags |= MP_SCOPE_FLAG_GENERATOR;
    } else if (MP_PARSE_NODE_STRUCT_KIND(pns0) == PN_for_stmt) {
        // async for
        compile_async_for_stmt(comp, pns0);
    } else {
        // async with
        assert(MP_PARSE_NODE_STRUCT_KIND(pns0) == PN_with_stmt);
        compile_async_with_stmt(comp, pns0);
    }
}
#endif

STATIC void compile_expr_stmt(compiler_t *comp, mp_parse_node_struct_t *pns) {
    if (MP_PARSE_NODE_IS_NULL(pns->nodes[1])) {
        if (comp->is_repl && comp->scope_cur->kind == SCOPE_MODULE) {
            // for REPL, evaluate then print the expression
            compile_load_id(comp, MP_QSTR___repl_print__);
            compile_node(comp, pns->nodes[0]);
            EMIT_ARG(call_function, 1, 0, 0);
            EMIT(pop_top);

        } else {
            // for non-REPL, evaluate then discard the expression
            if ((MP_PARSE_NODE_IS_LEAF(pns->nodes[0]) && !MP_PARSE_NODE_IS_ID(pns->nodes[0]))
                || MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_const_object)) {
                // do nothing with a lonely constant
            } else {
                compile_node(comp, pns->nodes[0]); // just an expression
                EMIT(pop_top); // discard last result since this is a statement and leaves nothing on the stack
            }
        }
    } else if (MP_PARSE_NODE_IS_STRUCT(pns->nodes[1])) {
        mp_parse_node_struct_t *pns1 = (mp_parse_node_struct_t*)pns->nodes[1];
        int kind = MP_PARSE_NODE_STRUCT_KIND(pns1);
        if (kind == PN_expr_stmt_augassign) {
            c_assign(comp, pns->nodes[0], ASSIGN_AUG_LOAD); // lhs load for aug assign
            compile_node(comp, pns1->nodes[1]); // rhs
            assert(MP_PARSE_NODE_IS_TOKEN(pns1->nodes[0]));
            mp_binary_op_t op;
            switch (MP_PARSE_NODE_LEAF_ARG(pns1->nodes[0])) {
                case MP_TOKEN_DEL_PIPE_EQUAL: op = MP_BINARY_OP_INPLACE_OR; break;
                case MP_TOKEN_DEL_CARET_EQUAL: op = MP_BINARY_OP_INPLACE_XOR; break;
                case MP_TOKEN_DEL_AMPERSAND_EQUAL: op = MP_BINARY_OP_INPLACE_AND; break;
                case MP_TOKEN_DEL_DBL_LESS_EQUAL: op = MP_BINARY_OP_INPLACE_LSHIFT; break;
                case MP_TOKEN_DEL_DBL_MORE_EQUAL: op = MP_BINARY_OP_INPLACE_RSHIFT; break;
                case MP_TOKEN_DEL_PLUS_EQUAL: op = MP_BINARY_OP_INPLACE_ADD; break;
                case MP_TOKEN_DEL_MINUS_EQUAL: op = MP_BINARY_OP_INPLACE_SUBTRACT; break;
                case MP_TOKEN_DEL_STAR_EQUAL: op = MP_BINARY_OP_INPLACE_MULTIPLY; break;
                case MP_TOKEN_DEL_DBL_SLASH_EQUAL: op = MP_BINARY_OP_INPLACE_FLOOR_DIVIDE; break;
                case MP_TOKEN_DEL_SLASH_EQUAL: op = MP_BINARY_OP_INPLACE_TRUE_DIVIDE; break;
                case MP_TOKEN_DEL_PERCENT_EQUAL: op = MP_BINARY_OP_INPLACE_MODULO; break;
                case MP_TOKEN_DEL_DBL_STAR_EQUAL: default: op = MP_BINARY_OP_INPLACE_POWER; break;
            }
            EMIT_ARG(binary_op, op);
            c_assign(comp, pns->nodes[0], ASSIGN_AUG_STORE); // lhs store for aug assign
        } else if (kind == PN_expr_stmt_assign_list) {
            int rhs = MP_PARSE_NODE_STRUCT_NUM_NODES(pns1) - 1;
            compile_node(comp, pns1->nodes[rhs]); // rhs
            // following CPython, we store left-most first
            if (rhs > 0) {
                EMIT(dup_top);
            }
            c_assign(comp, pns->nodes[0], ASSIGN_STORE); // lhs store
            for (int i = 0; i < rhs; i++) {
                if (i + 1 < rhs) {
                    EMIT(dup_top);
                }
                c_assign(comp, pns1->nodes[i], ASSIGN_STORE); // middle store
            }
        } else {
        plain_assign:
            if (MICROPY_COMP_DOUBLE_TUPLE_ASSIGN
                && MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[1], PN_testlist_star_expr)
                && MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_testlist_star_expr)
                && MP_PARSE_NODE_STRUCT_NUM_NODES((mp_parse_node_struct_t*)pns->nodes[1]) == 2
                && MP_PARSE_NODE_STRUCT_NUM_NODES((mp_parse_node_struct_t*)pns->nodes[0]) == 2) {
                // optimisation for a, b = c, d
                mp_parse_node_struct_t *pns10 = (mp_parse_node_struct_t*)pns->nodes[1];
                mp_parse_node_struct_t *pns0 = (mp_parse_node_struct_t*)pns->nodes[0];
                if (MP_PARSE_NODE_IS_STRUCT_KIND(pns0->nodes[0], PN_star_expr)
                    || MP_PARSE_NODE_IS_STRUCT_KIND(pns0->nodes[1], PN_star_expr)) {
                    // can't optimise when it's a star expression on the lhs
                    goto no_optimisation;
                }
                compile_node(comp, pns10->nodes[0]); // rhs
                compile_node(comp, pns10->nodes[1]); // rhs
                EMIT(rot_two);
                c_assign(comp, pns0->nodes[0], ASSIGN_STORE); // lhs store
                c_assign(comp, pns0->nodes[1], ASSIGN_STORE); // lhs store
            } else if (MICROPY_COMP_TRIPLE_TUPLE_ASSIGN
                && MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[1], PN_testlist_star_expr)
                && MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_testlist_star_expr)
                && MP_PARSE_NODE_STRUCT_NUM_NODES((mp_parse_node_struct_t*)pns->nodes[1]) == 3
                && MP_PARSE_NODE_STRUCT_NUM_NODES((mp_parse_node_struct_t*)pns->nodes[0]) == 3) {
                // optimisation for a, b, c = d, e, f
                mp_parse_node_struct_t *pns10 = (mp_parse_node_struct_t*)pns->nodes[1];
                mp_parse_node_struct_t *pns0 = (mp_parse_node_struct_t*)pns->nodes[0];
                if (MP_PARSE_NODE_IS_STRUCT_KIND(pns0->nodes[0], PN_star_expr)
                    || MP_PARSE_NODE_IS_STRUCT_KIND(pns0->nodes[1], PN_star_expr)
                    || MP_PARSE_NODE_IS_STRUCT_KIND(pns0->nodes[2], PN_star_expr)) {
                    // can't optimise when it's a star expression on the lhs
                    goto no_optimisation;
                }
                compile_node(comp, pns10->nodes[0]); // rhs
                compile_node(comp, pns10->nodes[1]); // rhs
                compile_node(comp, pns10->nodes[2]); // rhs
                EMIT(rot_three);
                EMIT(rot_two);
                c_assign(comp, pns0->nodes[0], ASSIGN_STORE); // lhs store
                c_assign(comp, pns0->nodes[1], ASSIGN_STORE); // lhs store
                c_assign(comp, pns0->nodes[2], ASSIGN_STORE); // lhs store
            } else {
                no_optimisation:
                compile_node(comp, pns->nodes[1]); // rhs
                c_assign(comp, pns->nodes[0], ASSIGN_STORE); // lhs store
            }
        }
    } else {
        goto plain_assign;
    }
}

STATIC void c_binary_op(compiler_t *comp, mp_parse_node_struct_t *pns, mp_binary_op_t binary_op) {
    int num_nodes = MP_PARSE_NODE_STRUCT_NUM_NODES(pns);
    compile_node(comp, pns->nodes[0]);
    for (int i = 1; i < num_nodes; i += 1) {
        compile_node(comp, pns->nodes[i]);
        EMIT_ARG(binary_op, binary_op);
    }
}

STATIC void compile_test_if_expr(compiler_t *comp, mp_parse_node_struct_t *pns) {
    assert(MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[1], PN_test_if_else));
    mp_parse_node_struct_t *pns_test_if_else = (mp_parse_node_struct_t*)pns->nodes[1];

    uint l_fail = comp_next_label(comp);
    uint l_end = comp_next_label(comp);
    c_if_cond(comp, pns_test_if_else->nodes[0], false, l_fail); // condition
    compile_node(comp, pns->nodes[0]); // success value
    EMIT_ARG(jump, l_end);
    EMIT_ARG(label_assign, l_fail);
    EMIT_ARG(adjust_stack_size, -1); // adjust stack size
    compile_node(comp, pns_test_if_else->nodes[1]); // failure value
    EMIT_ARG(label_assign, l_end);
}

STATIC void compile_lambdef(compiler_t *comp, mp_parse_node_struct_t *pns) {
    if (comp->pass == MP_PASS_SCOPE) {
        // create a new scope for this lambda
        scope_t *s = scope_new_and_link(comp, SCOPE_LAMBDA, (mp_parse_node_t)pns, comp->scope_cur->emit_options);
        // store the lambda scope so the compiling function (this one) can use it at each pass
        pns->nodes[2] = (mp_parse_node_t)s;
    }

    // get the scope for this lambda
    scope_t *this_scope = (scope_t*)pns->nodes[2];

    // compile the lambda definition
    compile_funcdef_lambdef(comp, this_scope, pns->nodes[0], PN_varargslist);
}

STATIC void compile_or_and_test(compiler_t *comp, mp_parse_node_struct_t *pns, bool cond) {
    uint l_end = comp_next_label(comp);
    int n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns);
    for (int i = 0; i < n; i += 1) {
        compile_node(comp, pns->nodes[i]);
        if (i + 1 < n) {
            EMIT_ARG(jump_if_or_pop, cond, l_end);
        }
    }
    EMIT_ARG(label_assign, l_end);
}

STATIC void compile_or_test(compiler_t *comp, mp_parse_node_struct_t *pns) {
    compile_or_and_test(comp, pns, true);
}

STATIC void compile_and_test(compiler_t *comp, mp_parse_node_struct_t *pns) {
    compile_or_and_test(comp, pns, false);
}

STATIC void compile_not_test_2(compiler_t *comp, mp_parse_node_struct_t *pns) {
    compile_node(comp, pns->nodes[0]);
    EMIT_ARG(unary_op, MP_UNARY_OP_NOT);
}

STATIC void compile_comparison(compiler_t *comp, mp_parse_node_struct_t *pns) {
    int num_nodes = MP_PARSE_NODE_STRUCT_NUM_NODES(pns);
    compile_node(comp, pns->nodes[0]);
    bool multi = (num_nodes > 3);
    uint l_fail = 0;
    if (multi) {
        l_fail = comp_next_label(comp);
    }
    for (int i = 1; i + 1 < num_nodes; i += 2) {
        compile_node(comp, pns->nodes[i + 1]);
        if (i + 2 < num_nodes) {
            EMIT(dup_top);
            EMIT(rot_three);
        }
        if (MP_PARSE_NODE_IS_TOKEN(pns->nodes[i])) {
            mp_binary_op_t op;
            switch (MP_PARSE_NODE_LEAF_ARG(pns->nodes[i])) {
                case MP_TOKEN_OP_LESS: op = MP_BINARY_OP_LESS; break;
                case MP_TOKEN_OP_MORE: op = MP_BINARY_OP_MORE; break;
                case MP_TOKEN_OP_DBL_EQUAL: op = MP_BINARY_OP_EQUAL; break;
                case MP_TOKEN_OP_LESS_EQUAL: op = MP_BINARY_OP_LESS_EQUAL; break;
                case MP_TOKEN_OP_MORE_EQUAL: op = MP_BINARY_OP_MORE_EQUAL; break;
                case MP_TOKEN_OP_NOT_EQUAL: op = MP_BINARY_OP_NOT_EQUAL; break;
                case MP_TOKEN_KW_IN: default: op = MP_BINARY_OP_IN; break;
            }
            EMIT_ARG(binary_op, op);
        } else {
            assert(MP_PARSE_NODE_IS_STRUCT(pns->nodes[i])); // should be
            mp_parse_node_struct_t *pns2 = (mp_parse_node_struct_t*)pns->nodes[i];
            int kind = MP_PARSE_NODE_STRUCT_KIND(pns2);
            if (kind == PN_comp_op_not_in) {
                EMIT_ARG(binary_op, MP_BINARY_OP_NOT_IN);
            } else {
                assert(kind == PN_comp_op_is); // should be
                if (MP_PARSE_NODE_IS_NULL(pns2->nodes[0])) {
                    EMIT_ARG(binary_op, MP_BINARY_OP_IS);
                } else {
                    EMIT_ARG(binary_op, MP_BINARY_OP_IS_NOT);
                }
            }
        }
        if (i + 2 < num_nodes) {
            EMIT_ARG(jump_if_or_pop, false, l_fail);
        }
    }
    if (multi) {
        uint l_end = comp_next_label(comp);
        EMIT_ARG(jump, l_end);
        EMIT_ARG(label_assign, l_fail);
        EMIT_ARG(adjust_stack_size, 1);
        EMIT(rot_two);
        EMIT(pop_top);
        EMIT_ARG(label_assign, l_end);
    }
}

STATIC void compile_star_expr(compiler_t *comp, mp_parse_node_struct_t *pns) {
    compile_syntax_error(comp, (mp_parse_node_t)pns, "*x must be assignment target");
}

STATIC void compile_expr(compiler_t *comp, mp_parse_node_struct_t *pns) {
    c_binary_op(comp, pns, MP_BINARY_OP_OR);
}

STATIC void compile_xor_expr(compiler_t *comp, mp_parse_node_struct_t *pns) {
    c_binary_op(comp, pns, MP_BINARY_OP_XOR);
}

STATIC void compile_and_expr(compiler_t *comp, mp_parse_node_struct_t *pns) {
    c_binary_op(comp, pns, MP_BINARY_OP_AND);
}

STATIC void compile_term(compiler_t *comp, mp_parse_node_struct_t *pns) {
    int num_nodes = MP_PARSE_NODE_STRUCT_NUM_NODES(pns);
    compile_node(comp, pns->nodes[0]);
    for (int i = 1; i + 1 < num_nodes; i += 2) {
        compile_node(comp, pns->nodes[i + 1]);
        mp_binary_op_t op;
        mp_token_kind_t tok = MP_PARSE_NODE_LEAF_ARG(pns->nodes[i]);
        switch (tok) {
            case MP_TOKEN_OP_PLUS:      op = MP_BINARY_OP_ADD; break;
            case MP_TOKEN_OP_MINUS:     op = MP_BINARY_OP_SUBTRACT; break;
            case MP_TOKEN_OP_STAR:      op = MP_BINARY_OP_MULTIPLY; break;
            case MP_TOKEN_OP_DBL_SLASH: op = MP_BINARY_OP_FLOOR_DIVIDE; break;
            case MP_TOKEN_OP_SLASH:     op = MP_BINARY_OP_TRUE_DIVIDE; break;
            case MP_TOKEN_OP_PERCENT:   op = MP_BINARY_OP_MODULO; break;
            case MP_TOKEN_OP_DBL_LESS:  op = MP_BINARY_OP_LSHIFT; break;
            default:
                assert(tok == MP_TOKEN_OP_DBL_MORE);
                op = MP_BINARY_OP_RSHIFT;
                break;
        }
        EMIT_ARG(binary_op, op);
    }
}

STATIC void compile_factor_2(compiler_t *comp, mp_parse_node_struct_t *pns) {
    compile_node(comp, pns->nodes[1]);
    mp_unary_op_t op;
    mp_token_kind_t tok = MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]);
    switch (tok) {
        case MP_TOKEN_OP_PLUS:  op = MP_UNARY_OP_POSITIVE; break;
        case MP_TOKEN_OP_MINUS: op = MP_UNARY_OP_NEGATIVE; break;
        default:
            assert(tok == MP_TOKEN_OP_TILDE);
            op = MP_UNARY_OP_INVERT;
            break;
    }
    EMIT_ARG(unary_op, op);
}

STATIC void compile_atom_expr_normal(compiler_t *comp, mp_parse_node_struct_t *pns) {
    // compile the subject of the expression
    compile_node(comp, pns->nodes[0]);

    // compile_atom_expr_await may call us with a NULL node
    if (MP_PARSE_NODE_IS_NULL(pns->nodes[1])) {
        return;
    }

    // get the array of trailers (known to be an array of PARSE_NODE_STRUCT)
    size_t num_trail = 1;
    mp_parse_node_struct_t **pns_trail = (mp_parse_node_struct_t**)&pns->nodes[1];
    if (MP_PARSE_NODE_STRUCT_KIND(pns_trail[0]) == PN_atom_expr_trailers) {
        num_trail = MP_PARSE_NODE_STRUCT_NUM_NODES(pns_trail[0]);
        pns_trail = (mp_parse_node_struct_t**)&pns_trail[0]->nodes[0];
    }

    // the current index into the array of trailers
    size_t i = 0;

    // handle special super() call
    if (comp->scope_cur->kind == SCOPE_FUNCTION
        && MP_PARSE_NODE_IS_ID(pns->nodes[0])
        && MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]) == MP_QSTR_super
        && MP_PARSE_NODE_STRUCT_KIND(pns_trail[0]) == PN_trailer_paren
        && MP_PARSE_NODE_IS_NULL(pns_trail[0]->nodes[0])) {
        // at this point we have matched "super()" within a function

        // load the class for super to search for a parent
        compile_load_id(comp, MP_QSTR___class__);

        // look for first argument to function (assumes it's "self")
        bool found = false;
        id_info_t *id = &comp->scope_cur->id_info[0];
        for (size_t n = comp->scope_cur->id_info_len; n > 0; --n, ++id) {
            if (id->flags & ID_FLAG_IS_PARAM) {
                // first argument found; load it
                compile_load_id(comp, id->qst);
                found = true;
                break;
            }
        }
        if (!found) {
            compile_syntax_error(comp, (mp_parse_node_t)pns_trail[0],
                "super() can't find self"); // really a TypeError
            return;
        }

        if (num_trail >= 3
            && MP_PARSE_NODE_STRUCT_KIND(pns_trail[1]) == PN_trailer_period
            && MP_PARSE_NODE_STRUCT_KIND(pns_trail[2]) == PN_trailer_paren) {
            // optimisation for method calls super().f(...), to eliminate heap allocation
            mp_parse_node_struct_t *pns_period = pns_trail[1];
            mp_parse_node_struct_t *pns_paren = pns_trail[2];
            EMIT_ARG(load_method, MP_PARSE_NODE_LEAF_ARG(pns_period->nodes[0]), true);
            compile_trailer_paren_helper(comp, pns_paren->nodes[0], true, 0);
            i = 3;
        } else {
            // a super() call
            EMIT_ARG(call_function, 2, 0, 0);
            i = 1;
        }
    }

    // compile the remaining trailers
    for (; i < num_trail; i++) {
        if (i + 1 < num_trail
            && MP_PARSE_NODE_STRUCT_KIND(pns_trail[i]) == PN_trailer_period
            && MP_PARSE_NODE_STRUCT_KIND(pns_trail[i + 1]) == PN_trailer_paren) {
            // optimisation for method calls a.f(...), following PyPy
            mp_parse_node_struct_t *pns_period = pns_trail[i];
            mp_parse_node_struct_t *pns_paren = pns_trail[i + 1];
            EMIT_ARG(load_method, MP_PARSE_NODE_LEAF_ARG(pns_period->nodes[0]), false);
            compile_trailer_paren_helper(comp, pns_paren->nodes[0], true, 0);
            i += 1;
        } else {
            // node is one of: trailer_paren, trailer_bracket, trailer_period
            compile_node(comp, (mp_parse_node_t)pns_trail[i]);
        }
    }
}

STATIC void compile_power(compiler_t *comp, mp_parse_node_struct_t *pns) {
    compile_generic_all_nodes(comp, pns); // 2 nodes, arguments of power
    EMIT_ARG(binary_op, MP_BINARY_OP_POWER);
}

STATIC void compile_trailer_paren_helper(compiler_t *comp, mp_parse_node_t pn_arglist, bool is_method_call, int n_positional_extra) {
    // function to call is on top of stack

    // get the list of arguments
    mp_parse_node_t *args;
    int n_args = mp_parse_node_extract_list(&pn_arglist, PN_arglist, &args);

    // compile the arguments
    // Rather than calling compile_node on the list, we go through the list of args
    // explicitly here so that we can count the number of arguments and give sensible
    // error messages.
    int n_positional = n_positional_extra;
    uint n_keyword = 0;
    uint star_flags = 0;
    mp_parse_node_struct_t *star_args_node = NULL, *dblstar_args_node = NULL;
    for (int i = 0; i < n_args; i++) {
        if (MP_PARSE_NODE_IS_STRUCT(args[i])) {
            mp_parse_node_struct_t *pns_arg = (mp_parse_node_struct_t*)args[i];
            if (MP_PARSE_NODE_STRUCT_KIND(pns_arg) == PN_arglist_star) {
                if (star_flags & MP_EMIT_STAR_FLAG_SINGLE) {
                    compile_syntax_error(comp, (mp_parse_node_t)pns_arg, "can't have multiple *x");
                    return;
                }
                star_flags |= MP_EMIT_STAR_FLAG_SINGLE;
                star_args_node = pns_arg;
            } else if (MP_PARSE_NODE_STRUCT_KIND(pns_arg) == PN_arglist_dbl_star) {
                if (star_flags & MP_EMIT_STAR_FLAG_DOUBLE) {
                    compile_syntax_error(comp, (mp_parse_node_t)pns_arg, "can't have multiple **x");
                    return;
                }
                star_flags |= MP_EMIT_STAR_FLAG_DOUBLE;
                dblstar_args_node = pns_arg;
            } else if (MP_PARSE_NODE_STRUCT_KIND(pns_arg) == PN_argument) {
                if (!MP_PARSE_NODE_IS_STRUCT_KIND(pns_arg->nodes[1], PN_comp_for)) {
                    if (!MP_PARSE_NODE_IS_ID(pns_arg->nodes[0])) {
                        compile_syntax_error(comp, (mp_parse_node_t)pns_arg, "LHS of keyword arg must be an id");
                        return;
                    }
                    EMIT_ARG(load_const_str, MP_PARSE_NODE_LEAF_ARG(pns_arg->nodes[0]));
                    compile_node(comp, pns_arg->nodes[1]);
                    n_keyword += 1;
                } else {
                    compile_comprehension(comp, pns_arg, SCOPE_GEN_EXPR);
                    n_positional++;
                }
            } else {
                goto normal_argument;
            }
        } else {
            normal_argument:
            if (star_flags) {
                compile_syntax_error(comp, args[i], "non-keyword arg after */**");
                return;
            }
            if (n_keyword > 0) {
                compile_syntax_error(comp, args[i], "non-keyword arg after keyword arg");
                return;
            }
            compile_node(comp, args[i]);
            n_positional++;
        }
    }

    // compile the star/double-star arguments if we had them
    // if we had one but not the other then we load "null" as a place holder
    if (star_flags != 0) {
        if (star_args_node == NULL) {
            EMIT(load_null);
        } else {
            compile_node(comp, star_args_node->nodes[0]);
        }
        if (dblstar_args_node == NULL) {
            EMIT(load_null);
        } else {
            compile_node(comp, dblstar_args_node->nodes[0]);
        }
    }

    // emit the function/method call
    if (is_method_call) {
        EMIT_ARG(call_method, n_positional, n_keyword, star_flags);
    } else {
        EMIT_ARG(call_function, n_positional, n_keyword, star_flags);
    }
}

// pns needs to have 2 nodes, first is lhs of comprehension, second is PN_comp_for node
STATIC void compile_comprehension(compiler_t *comp, mp_parse_node_struct_t *pns, scope_kind_t kind) {
    assert(MP_PARSE_NODE_STRUCT_NUM_NODES(pns) == 2);
    assert(MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[1], PN_comp_for));
    mp_parse_node_struct_t *pns_comp_for = (mp_parse_node_struct_t*)pns->nodes[1];

    if (comp->pass == MP_PASS_SCOPE) {
        // create a new scope for this comprehension
        scope_t *s = scope_new_and_link(comp, kind, (mp_parse_node_t)pns, comp->scope_cur->emit_options);
        // store the comprehension scope so the compiling function (this one) can use it at each pass
        pns_comp_for->nodes[3] = (mp_parse_node_t)s;
    }

    // get the scope for this comprehension
    scope_t *this_scope = (scope_t*)pns_comp_for->nodes[3];

    // compile the comprehension
    close_over_variables_etc(comp, this_scope, 0, 0);

    compile_node(comp, pns_comp_for->nodes[1]); // source of the iterator
    if (kind == SCOPE_GEN_EXPR) {
        EMIT_ARG(get_iter, false);
    }
    EMIT_ARG(call_function, 1, 0, 0);
}

STATIC void compile_atom_paren(compiler_t *comp, mp_parse_node_struct_t *pns) {
    if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) {
        // an empty tuple
        c_tuple(comp, MP_PARSE_NODE_NULL, NULL);
    } else {
        assert(MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_testlist_comp));
        pns = (mp_parse_node_struct_t*)pns->nodes[0];
        assert(!MP_PARSE_NODE_IS_NULL(pns->nodes[1]));
        if (MP_PARSE_NODE_IS_STRUCT(pns->nodes[1])) {
            mp_parse_node_struct_t *pns2 = (mp_parse_node_struct_t*)pns->nodes[1];
            if (MP_PARSE_NODE_STRUCT_KIND(pns2) == PN_testlist_comp_3b) {
                // tuple of one item, with trailing comma
                assert(MP_PARSE_NODE_IS_NULL(pns2->nodes[0]));
                c_tuple(comp, pns->nodes[0], NULL);
            } else if (MP_PARSE_NODE_STRUCT_KIND(pns2) == PN_testlist_comp_3c) {
                // tuple of many items
                c_tuple(comp, pns->nodes[0], pns2);
            } else if (MP_PARSE_NODE_STRUCT_KIND(pns2) == PN_comp_for) {
                // generator expression
                compile_comprehension(comp, pns, SCOPE_GEN_EXPR);
            } else {
                // tuple with 2 items
                goto tuple_with_2_items;
            }
        } else {
            // tuple with 2 items
            tuple_with_2_items:
            c_tuple(comp, MP_PARSE_NODE_NULL, pns);
        }
    }
}

STATIC void compile_atom_bracket(compiler_t *comp, mp_parse_node_struct_t *pns) {
    if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) {
        // empty list
        EMIT_ARG(build_list, 0);
    } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_testlist_comp)) {
        mp_parse_node_struct_t *pns2 = (mp_parse_node_struct_t*)pns->nodes[0];
        if (MP_PARSE_NODE_IS_STRUCT(pns2->nodes[1])) {
            mp_parse_node_struct_t *pns3 = (mp_parse_node_struct_t*)pns2->nodes[1];
            if (MP_PARSE_NODE_STRUCT_KIND(pns3) == PN_testlist_comp_3b) {
                // list of one item, with trailing comma
                assert(MP_PARSE_NODE_IS_NULL(pns3->nodes[0]));
                compile_node(comp, pns2->nodes[0]);
                EMIT_ARG(build_list, 1);
            } else if (MP_PARSE_NODE_STRUCT_KIND(pns3) == PN_testlist_comp_3c) {
                // list of many items
                compile_node(comp, pns2->nodes[0]);
                compile_generic_all_nodes(comp, pns3);
                EMIT_ARG(build_list, 1 + MP_PARSE_NODE_STRUCT_NUM_NODES(pns3));
            } else if (MP_PARSE_NODE_STRUCT_KIND(pns3) == PN_comp_for) {
                // list comprehension
                compile_comprehension(comp, pns2, SCOPE_LIST_COMP);
            } else {
                // list with 2 items
                goto list_with_2_items;
            }
        } else {
            // list with 2 items
            list_with_2_items:
            compile_node(comp, pns2->nodes[0]);
            compile_node(comp, pns2->nodes[1]);
            EMIT_ARG(build_list, 2);
        }
    } else {
        // list with 1 item
        compile_node(comp, pns->nodes[0]);
        EMIT_ARG(build_list, 1);
    }
}

STATIC void compile_atom_brace(compiler_t *comp, mp_parse_node_struct_t *pns) {
    mp_parse_node_t pn = pns->nodes[0];
    if (MP_PARSE_NODE_IS_NULL(pn)) {
        // empty dict
        EMIT_ARG(build_map, 0);
    } else if (MP_PARSE_NODE_IS_STRUCT(pn)) {
        pns = (mp_parse_node_struct_t*)pn;
        if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_dictorsetmaker_item) {
            // dict with one element
            EMIT_ARG(build_map, 1);
            compile_node(comp, pn);
            EMIT(store_map);
        } else if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_dictorsetmaker) {
            assert(MP_PARSE_NODE_IS_STRUCT(pns->nodes[1])); // should succeed
            mp_parse_node_struct_t *pns1 = (mp_parse_node_struct_t*)pns->nodes[1];
            if (MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_dictorsetmaker_list) {
                // dict/set with multiple elements

                // get tail elements (2nd, 3rd, ...)
                mp_parse_node_t *nodes;
                int n = mp_parse_node_extract_list(&pns1->nodes[0], PN_dictorsetmaker_list2, &nodes);

                // first element sets whether it's a dict or set
                bool is_dict;
                if (!MICROPY_PY_BUILTINS_SET || MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_dictorsetmaker_item)) {
                    // a dictionary
                    EMIT_ARG(build_map, 1 + n);
                    compile_node(comp, pns->nodes[0]);
                    EMIT(store_map);
                    is_dict = true;
                } else {
                    // a set
                    compile_node(comp, pns->nodes[0]); // 1st value of set
                    is_dict = false;
                }

                // process rest of elements
                for (int i = 0; i < n; i++) {
                    mp_parse_node_t pn_i = nodes[i];
                    bool is_key_value = MP_PARSE_NODE_IS_STRUCT_KIND(pn_i, PN_dictorsetmaker_item);
                    compile_node(comp, pn_i);
                    if (is_dict) {
                        if (!is_key_value) {
                            if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) {
                                compile_syntax_error(comp, (mp_parse_node_t)pns, "invalid syntax");
                            } else {
                                compile_syntax_error(comp, (mp_parse_node_t)pns, "expecting key:value for dict");
                            }
                            return;
                        }
                        EMIT(store_map);
                    } else {
                        if (is_key_value) {
                            if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) {
                                compile_syntax_error(comp, (mp_parse_node_t)pns, "invalid syntax");
                            } else {
                                compile_syntax_error(comp, (mp_parse_node_t)pns, "expecting just a value for set");
                            }
                            return;
                        }
                    }
                }

                #if MICROPY_PY_BUILTINS_SET
                // if it's a set, build it
                if (!is_dict) {
                    EMIT_ARG(build_set, 1 + n);
                }
                #endif
            } else {
                assert(MP_PARSE_NODE_STRUCT_KIND(pns1) == PN_comp_for); // should be
                // dict/set comprehension
                if (!MICROPY_PY_BUILTINS_SET || MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_dictorsetmaker_item)) {
                    // a dictionary comprehension
                    compile_comprehension(comp, pns, SCOPE_DICT_COMP);
                } else {
                    // a set comprehension
                    compile_comprehension(comp, pns, SCOPE_SET_COMP);
                }
            }
        } else {
            // set with one element
            goto set_with_one_element;
        }
    } else {
        // set with one element
        set_with_one_element:
        #if MICROPY_PY_BUILTINS_SET
        compile_node(comp, pn);
        EMIT_ARG(build_set, 1);
        #else
        assert(0);
        #endif
    }
}

STATIC void compile_trailer_paren(compiler_t *comp, mp_parse_node_struct_t *pns) {
    compile_trailer_paren_helper(comp, pns->nodes[0], false, 0);
}

STATIC void compile_trailer_bracket(compiler_t *comp, mp_parse_node_struct_t *pns) {
    // object who's index we want is on top of stack
    compile_node(comp, pns->nodes[0]); // the index
    EMIT(load_subscr);
}

STATIC void compile_trailer_period(compiler_t *comp, mp_parse_node_struct_t *pns) {
    // object who's attribute we want is on top of stack
    EMIT_ARG(load_attr, MP_PARSE_NODE_LEAF_ARG(pns->nodes[0])); // attribute to get
}

#if MICROPY_PY_BUILTINS_SLICE
STATIC void compile_subscript_3_helper(compiler_t *comp, mp_parse_node_struct_t *pns) {
    assert(MP_PARSE_NODE_STRUCT_KIND(pns) == PN_subscript_3); // should always be
    mp_parse_node_t pn = pns->nodes[0];
    if (MP_PARSE_NODE_IS_NULL(pn)) {
        // [?:]
        EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
        EMIT_ARG(build_slice, 2);
    } else if (MP_PARSE_NODE_IS_STRUCT(pn)) {
        pns = (mp_parse_node_struct_t*)pn;
        if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_subscript_3c) {
            EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
            pn = pns->nodes[0];
            if (MP_PARSE_NODE_IS_NULL(pn)) {
                // [?::]
                EMIT_ARG(build_slice, 2);
            } else {
                // [?::x]
                compile_node(comp, pn);
                EMIT_ARG(build_slice, 3);
            }
        } else if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_subscript_3d) {
            compile_node(comp, pns->nodes[0]);
            assert(MP_PARSE_NODE_IS_STRUCT(pns->nodes[1])); // should always be
            pns = (mp_parse_node_struct_t*)pns->nodes[1];
            assert(MP_PARSE_NODE_STRUCT_KIND(pns) == PN_sliceop); // should always be
            if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) {
                // [?:x:]
                EMIT_ARG(build_slice, 2);
            } else {
                // [?:x:x]
                compile_node(comp, pns->nodes[0]);
                EMIT_ARG(build_slice, 3);
            }
        } else {
            // [?:x]
            compile_node(comp, pn);
            EMIT_ARG(build_slice, 2);
        }
    } else {
        // [?:x]
        compile_node(comp, pn);
        EMIT_ARG(build_slice, 2);
    }
}

STATIC void compile_subscript_2(compiler_t *comp, mp_parse_node_struct_t *pns) {
    compile_node(comp, pns->nodes[0]); // start of slice
    assert(MP_PARSE_NODE_IS_STRUCT(pns->nodes[1])); // should always be
    compile_subscript_3_helper(comp, (mp_parse_node_struct_t*)pns->nodes[1]);
}

STATIC void compile_subscript_3(compiler_t *comp, mp_parse_node_struct_t *pns) {
    EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
    compile_subscript_3_helper(comp, pns);
}
#endif // MICROPY_PY_BUILTINS_SLICE

STATIC void compile_dictorsetmaker_item(compiler_t *comp, mp_parse_node_struct_t *pns) {
    // if this is called then we are compiling a dict key:value pair
    compile_node(comp, pns->nodes[1]); // value
    compile_node(comp, pns->nodes[0]); // key
}

STATIC void compile_classdef(compiler_t *comp, mp_parse_node_struct_t *pns) {
    qstr cname = compile_classdef_helper(comp, pns, comp->scope_cur->emit_options);
    // store class object into class name
    compile_store_id(comp, cname);
}

STATIC void compile_yield_expr(compiler_t *comp, mp_parse_node_struct_t *pns) {
    if (comp->scope_cur->kind != SCOPE_FUNCTION && comp->scope_cur->kind != SCOPE_LAMBDA) {
        compile_syntax_error(comp, (mp_parse_node_t)pns, "'yield' outside function");
        return;
    }
    if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) {
        EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
        EMIT(yield_value);
    } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_yield_arg_from)) {
        pns = (mp_parse_node_struct_t*)pns->nodes[0];
        compile_node(comp, pns->nodes[0]);
        compile_yield_from(comp);
    } else {
        compile_node(comp, pns->nodes[0]);
        EMIT(yield_value);
    }
}

#if MICROPY_PY_ASYNC_AWAIT
STATIC void compile_atom_expr_await(compiler_t *comp, mp_parse_node_struct_t *pns) {
    if (comp->scope_cur->kind != SCOPE_FUNCTION && comp->scope_cur->kind != SCOPE_LAMBDA) {
        compile_syntax_error(comp, (mp_parse_node_t)pns, "'await' outside function");
        return;
    }
    compile_atom_expr_normal(comp, pns);
    compile_yield_from(comp);
}
#endif

STATIC mp_obj_t get_const_object(mp_parse_node_struct_t *pns) {
    #if MICROPY_OBJ_REPR == MICROPY_OBJ_REPR_D
    // nodes are 32-bit pointers, but need to extract 64-bit object
    return (uint64_t)pns->nodes[0] | ((uint64_t)pns->nodes[1] << 32);
    #else
    return (mp_obj_t)pns->nodes[0];
    #endif
}

STATIC void compile_const_object(compiler_t *comp, mp_parse_node_struct_t *pns) {
    EMIT_ARG(load_const_obj, get_const_object(pns));
}

typedef void (*compile_function_t)(compiler_t*, mp_parse_node_struct_t*);
STATIC const compile_function_t compile_function[] = {
// only define rules with a compile function
#define c(f) compile_##f
#define DEF_RULE(rule, comp, kind, ...) comp,
#define DEF_RULE_NC(rule, kind, ...)
#include "py/grammar.h"
#undef c
#undef DEF_RULE
#undef DEF_RULE_NC
    compile_const_object,
};

STATIC void compile_node(compiler_t *comp, mp_parse_node_t pn) {
    if (MP_PARSE_NODE_IS_NULL(pn)) {
        // pass
    } else if (MP_PARSE_NODE_IS_SMALL_INT(pn)) {
        mp_int_t arg = MP_PARSE_NODE_LEAF_SMALL_INT(pn);
        #if MICROPY_DYNAMIC_COMPILER
        mp_uint_t sign_mask = -(1 << (mp_dynamic_compiler.small_int_bits - 1));
        if ((arg & sign_mask) == 0 || (arg & sign_mask) == sign_mask) {
            // integer fits in target runtime's small-int
            EMIT_ARG(load_const_small_int, arg);
        } else {
            // integer doesn't fit, so create a multi-precision int object
            // (but only create the actual object on the last pass)
            if (comp->pass != MP_PASS_EMIT) {
                EMIT_ARG(load_const_obj, mp_const_none);
            } else {
                EMIT_ARG(load_const_obj, mp_obj_new_int_from_ll(arg));
            }
        }
        #else
        EMIT_ARG(load_const_small_int, arg);
        #endif
    } else if (MP_PARSE_NODE_IS_LEAF(pn)) {
        uintptr_t arg = MP_PARSE_NODE_LEAF_ARG(pn);
        switch (MP_PARSE_NODE_LEAF_KIND(pn)) {
            case MP_PARSE_NODE_ID: compile_load_id(comp, arg); break;
            case MP_PARSE_NODE_STRING: EMIT_ARG(load_const_str, arg); break;
            case MP_PARSE_NODE_BYTES:
                // only create and load the actual bytes object on the last pass
                if (comp->pass != MP_PASS_EMIT) {
                    EMIT_ARG(load_const_obj, mp_const_none);
                } else {
                    size_t len;
                    const byte *data = qstr_data(arg, &len);
                    EMIT_ARG(load_const_obj, mp_obj_new_bytes(data, len));
                }
                break;
            case MP_PARSE_NODE_TOKEN: default:
                if (arg == MP_TOKEN_NEWLINE) {
                    // this can occur when file_input lets through a NEWLINE (eg if file starts with a newline)
                    // or when single_input lets through a NEWLINE (user enters a blank line)
                    // do nothing
                } else {
                  EMIT_ARG(load_const_tok, arg);
                }
                break;
        }
    } else {
        mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn;
        EMIT_ARG(set_source_line, pns->source_line);
        assert(MP_PARSE_NODE_STRUCT_KIND(pns) <= PN_const_object);
        compile_function_t f = compile_function[MP_PARSE_NODE_STRUCT_KIND(pns)];
        f(comp, pns);
    }
}

STATIC void compile_scope_func_lambda_param(compiler_t *comp, mp_parse_node_t pn, pn_kind_t pn_name, pn_kind_t pn_star, pn_kind_t pn_dbl_star) {
    // check that **kw is last
    if ((comp->scope_cur->scope_flags & MP_SCOPE_FLAG_VARKEYWORDS) != 0) {
        compile_syntax_error(comp, pn, "invalid syntax");
        return;
    }

    qstr param_name = MP_QSTR_NULL;
    uint param_flag = ID_FLAG_IS_PARAM;
    if (MP_PARSE_NODE_IS_ID(pn)) {
        param_name = MP_PARSE_NODE_LEAF_ARG(pn);
        if (comp->have_star) {
            // comes after a star, so counts as a keyword-only parameter
            comp->scope_cur->num_kwonly_args += 1;
        } else {
            // comes before a star, so counts as a positional parameter
            comp->scope_cur->num_pos_args += 1;
        }
    } else {
        assert(MP_PARSE_NODE_IS_STRUCT(pn));
        mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn;
        if (MP_PARSE_NODE_STRUCT_KIND(pns) == pn_name) {
            param_name = MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]);
            if (comp->have_star) {
                // comes after a star, so counts as a keyword-only parameter
                comp->scope_cur->num_kwonly_args += 1;
            } else {
                // comes before a star, so counts as a positional parameter
                comp->scope_cur->num_pos_args += 1;
            }
        } else if (MP_PARSE_NODE_STRUCT_KIND(pns) == pn_star) {
            if (comp->have_star) {
                // more than one star
                compile_syntax_error(comp, pn, "invalid syntax");
                return;
            }
            comp->have_star = true;
            param_flag = ID_FLAG_IS_PARAM | ID_FLAG_IS_STAR_PARAM;
            if (MP_PARSE_NODE_IS_NULL(pns->nodes[0])) {
                // bare star
                // TODO see http://www.python.org/dev/peps/pep-3102/
                //assert(comp->scope_cur->num_dict_params == 0);
            } else if (MP_PARSE_NODE_IS_ID(pns->nodes[0])) {
                // named star
                comp->scope_cur->scope_flags |= MP_SCOPE_FLAG_VARARGS;
                param_name = MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]);
            } else {
                assert(MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_tfpdef)); // should be
                // named star with possible annotation
                comp->scope_cur->scope_flags |= MP_SCOPE_FLAG_VARARGS;
                pns = (mp_parse_node_struct_t*)pns->nodes[0];
                param_name = MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]);
            }
        } else {
            assert(MP_PARSE_NODE_STRUCT_KIND(pns) == pn_dbl_star); // should be
            param_name = MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]);
            param_flag = ID_FLAG_IS_PARAM | ID_FLAG_IS_DBL_STAR_PARAM;
            comp->scope_cur->scope_flags |= MP_SCOPE_FLAG_VARKEYWORDS;
        }
    }

    if (param_name != MP_QSTR_NULL) {
        bool added;
        id_info_t *id_info = scope_find_or_add_id(comp->scope_cur, param_name, &added);
        if (!added) {
            compile_syntax_error(comp, pn, "name reused for argument");
            return;
        }
        id_info->kind = ID_INFO_KIND_LOCAL;
        id_info->flags = param_flag;
    }
}

STATIC void compile_scope_func_param(compiler_t *comp, mp_parse_node_t pn) {
    compile_scope_func_lambda_param(comp, pn, PN_typedargslist_name, PN_typedargslist_star, PN_typedargslist_dbl_star);
}

STATIC void compile_scope_lambda_param(compiler_t *comp, mp_parse_node_t pn) {
    compile_scope_func_lambda_param(comp, pn, PN_varargslist_name, PN_varargslist_star, PN_varargslist_dbl_star);
}

#if MICROPY_EMIT_NATIVE
STATIC void compile_scope_func_annotations(compiler_t *comp, mp_parse_node_t pn) {
    if (!MP_PARSE_NODE_IS_STRUCT(pn)) {
        // no annotation
        return;
    }

    mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn;
    if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_typedargslist_name) {
        // named parameter with possible annotation
        // fallthrough
    } else if (MP_PARSE_NODE_STRUCT_KIND(pns) == PN_typedargslist_star) {
        if (MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_tfpdef)) {
            // named star with possible annotation
            pns = (mp_parse_node_struct_t*)pns->nodes[0];
            // fallthrough
        } else {
            // no annotation
            return;
        }
    } else {
        assert(MP_PARSE_NODE_STRUCT_KIND(pns) == PN_typedargslist_dbl_star);
        // double star with possible annotation
        // fallthrough
    }

    mp_parse_node_t pn_annotation = pns->nodes[1];

    if (!MP_PARSE_NODE_IS_NULL(pn_annotation)) {
        qstr param_name = MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]);
        id_info_t *id_info = scope_find(comp->scope_cur, param_name);
        assert(id_info != NULL);

        if (MP_PARSE_NODE_IS_ID(pn_annotation)) {
            qstr arg_type = MP_PARSE_NODE_LEAF_ARG(pn_annotation);
            EMIT_ARG(set_native_type, MP_EMIT_NATIVE_TYPE_ARG, id_info->local_num, arg_type);
        } else {
            compile_syntax_error(comp, pn_annotation, "parameter annotation must be an identifier");
        }
    }
}
#endif // MICROPY_EMIT_NATIVE

STATIC void compile_scope_comp_iter(compiler_t *comp, mp_parse_node_struct_t *pns_comp_for, mp_parse_node_t pn_inner_expr, int for_depth) {
    uint l_top = comp_next_label(comp);
    uint l_end = comp_next_label(comp);
    EMIT_ARG(label_assign, l_top);
    EMIT_ARG(for_iter, l_end);
    c_assign(comp, pns_comp_for->nodes[0], ASSIGN_STORE);
    mp_parse_node_t pn_iter = pns_comp_for->nodes[2];

    tail_recursion:
    if (MP_PARSE_NODE_IS_NULL(pn_iter)) {
        // no more nested if/for; compile inner expression
        compile_node(comp, pn_inner_expr);
        if (comp->scope_cur->kind == SCOPE_GEN_EXPR) {
            EMIT(yield_value);
            EMIT(pop_top);
        } else {
            EMIT_ARG(store_comp, comp->scope_cur->kind, 4 * for_depth + 5);
        }
    } else if (MP_PARSE_NODE_STRUCT_KIND((mp_parse_node_struct_t*)pn_iter) == PN_comp_if) {
        // if condition
        mp_parse_node_struct_t *pns_comp_if = (mp_parse_node_struct_t*)pn_iter;
        c_if_cond(comp, pns_comp_if->nodes[0], false, l_top);
        pn_iter = pns_comp_if->nodes[1];
        goto tail_recursion;
    } else {
        assert(MP_PARSE_NODE_STRUCT_KIND((mp_parse_node_struct_t*)pn_iter) == PN_comp_for); // should be
        // for loop
        mp_parse_node_struct_t *pns_comp_for2 = (mp_parse_node_struct_t*)pn_iter;
        compile_node(comp, pns_comp_for2->nodes[1]);
        EMIT_ARG(get_iter, true);
        compile_scope_comp_iter(comp, pns_comp_for2, pn_inner_expr, for_depth + 1);
    }

    EMIT_ARG(jump, l_top);
    EMIT_ARG(label_assign, l_end);
    EMIT(for_iter_end);
}

STATIC void check_for_doc_string(compiler_t *comp, mp_parse_node_t pn) {
#if MICROPY_ENABLE_DOC_STRING
    // see http://www.python.org/dev/peps/pep-0257/

    // look for the first statement
    if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_expr_stmt)) {
        // a statement; fall through
    } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_file_input_2)) {
        // file input; find the first non-newline node
        mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn;
        int num_nodes = MP_PARSE_NODE_STRUCT_NUM_NODES(pns);
        for (int i = 0; i < num_nodes; i++) {
            pn = pns->nodes[i];
            if (!(MP_PARSE_NODE_IS_LEAF(pn) && MP_PARSE_NODE_LEAF_KIND(pn) == MP_PARSE_NODE_TOKEN && MP_PARSE_NODE_LEAF_ARG(pn) == MP_TOKEN_NEWLINE)) {
                // not a newline, so this is the first statement; finish search
                break;
            }
        }
        // if we didn't find a non-newline then it's okay to fall through; pn will be a newline and so doc-string test below will fail gracefully
    } else if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_suite_block_stmts)) {
        // a list of statements; get the first one
        pn = ((mp_parse_node_struct_t*)pn)->nodes[0];
    } else {
        return;
    }

    // check the first statement for a doc string
    if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, PN_expr_stmt)) {
        mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)pn;
        if ((MP_PARSE_NODE_IS_LEAF(pns->nodes[0])
                && MP_PARSE_NODE_LEAF_KIND(pns->nodes[0]) == MP_PARSE_NODE_STRING)
            || (MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[0], PN_const_object)
                && MP_OBJ_IS_STR(get_const_object((mp_parse_node_struct_t*)pns->nodes[0])))) {
                // compile the doc string
                compile_node(comp, pns->nodes[0]);
                // store the doc string
                compile_store_id(comp, MP_QSTR___doc__);
        }
    }
#else
    (void)comp;
    (void)pn;
#endif
}

STATIC void compile_scope(compiler_t *comp, scope_t *scope, pass_kind_t pass) {
    comp->pass = pass;
    comp->scope_cur = scope;
    comp->next_label = 0;
    EMIT_ARG(start_pass, pass, scope);

    if (comp->pass == MP_PASS_SCOPE) {
        // reset maximum stack sizes in scope
        // they will be computed in this first pass
        scope->stack_size = 0;
        scope->exc_stack_size = 0;
    }

    // compile
    if (MP_PARSE_NODE_IS_STRUCT_KIND(scope->pn, PN_eval_input)) {
        assert(scope->kind == SCOPE_MODULE);
        mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)scope->pn;
        compile_node(comp, pns->nodes[0]); // compile the expression
        EMIT(return_value);
    } else if (scope->kind == SCOPE_MODULE) {
        if (!comp->is_repl) {
            check_for_doc_string(comp, scope->pn);
        }
        compile_node(comp, scope->pn);
        EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
        EMIT(return_value);
    } else if (scope->kind == SCOPE_FUNCTION) {
        assert(MP_PARSE_NODE_IS_STRUCT(scope->pn));
        mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)scope->pn;
        assert(MP_PARSE_NODE_STRUCT_KIND(pns) == PN_funcdef);

        // work out number of parameters, keywords and default parameters, and add them to the id_info array
        // must be done before compiling the body so that arguments are numbered first (for LOAD_FAST etc)
        if (comp->pass == MP_PASS_SCOPE) {
            comp->have_star = false;
            apply_to_single_or_list(comp, pns->nodes[1], PN_typedargslist, compile_scope_func_param);
        }
        #if MICROPY_EMIT_NATIVE
        else if (scope->emit_options == MP_EMIT_OPT_VIPER) {
            // compile annotations; only needed on latter compiler passes
            // only needed for viper emitter

            // argument annotations
            apply_to_single_or_list(comp, pns->nodes[1], PN_typedargslist, compile_scope_func_annotations);

            // pns->nodes[2] is return/whole function annotation
            mp_parse_node_t pn_annotation = pns->nodes[2];
            if (!MP_PARSE_NODE_IS_NULL(pn_annotation)) {
                // nodes[2] can be null or a test-expr
                if (MP_PARSE_NODE_IS_ID(pn_annotation)) {
                    qstr ret_type = MP_PARSE_NODE_LEAF_ARG(pn_annotation);
                    EMIT_ARG(set_native_type, MP_EMIT_NATIVE_TYPE_RETURN, 0, ret_type);
                } else {
                    compile_syntax_error(comp, pn_annotation, "return annotation must be an identifier");
                }
            }
        }
        #endif // MICROPY_EMIT_NATIVE

        compile_node(comp, pns->nodes[3]); // 3 is function body
        // emit return if it wasn't the last opcode
        if (!EMIT(last_emit_was_return_value)) {
            EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
            EMIT(return_value);
        }
    } else if (scope->kind == SCOPE_LAMBDA) {
        assert(MP_PARSE_NODE_IS_STRUCT(scope->pn));
        mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)scope->pn;
        assert(MP_PARSE_NODE_STRUCT_NUM_NODES(pns) == 3);

        // work out number of parameters, keywords and default parameters, and add them to the id_info array
        // must be done before compiling the body so that arguments are numbered first (for LOAD_FAST etc)
        if (comp->pass == MP_PASS_SCOPE) {
            comp->have_star = false;
            apply_to_single_or_list(comp, pns->nodes[0], PN_varargslist, compile_scope_lambda_param);
        }

        compile_node(comp, pns->nodes[1]); // 1 is lambda body

        // if the lambda is a generator, then we return None, not the result of the expression of the lambda
        if (scope->scope_flags & MP_SCOPE_FLAG_GENERATOR) {
            EMIT(pop_top);
            EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
        }
        EMIT(return_value);
    } else if (scope->kind == SCOPE_LIST_COMP || scope->kind == SCOPE_DICT_COMP || scope->kind == SCOPE_SET_COMP || scope->kind == SCOPE_GEN_EXPR) {
        // a bit of a hack at the moment

        assert(MP_PARSE_NODE_IS_STRUCT(scope->pn));
        mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)scope->pn;
        assert(MP_PARSE_NODE_STRUCT_NUM_NODES(pns) == 2);
        assert(MP_PARSE_NODE_IS_STRUCT_KIND(pns->nodes[1], PN_comp_for));
        mp_parse_node_struct_t *pns_comp_for = (mp_parse_node_struct_t*)pns->nodes[1];

        // We need a unique name for the comprehension argument (the iterator).
        // CPython uses .0, but we should be able to use anything that won't
        // clash with a user defined variable.  Best to use an existing qstr,
        // so we use the blank qstr.
        qstr qstr_arg = MP_QSTR_;
        if (comp->pass == MP_PASS_SCOPE) {
            bool added;
            id_info_t *id_info = scope_find_or_add_id(comp->scope_cur, qstr_arg, &added);
            assert(added);
            id_info->kind = ID_INFO_KIND_LOCAL;
            scope->num_pos_args = 1;
        }

        if (scope->kind == SCOPE_LIST_COMP) {
            EMIT_ARG(build_list, 0);
        } else if (scope->kind == SCOPE_DICT_COMP) {
            EMIT_ARG(build_map, 0);
        #if MICROPY_PY_BUILTINS_SET
        } else if (scope->kind == SCOPE_SET_COMP) {
            EMIT_ARG(build_set, 0);
        #endif
        }

        // There are 4 slots on the stack for the iterator, and the first one is
        // NULL to indicate that the second one points to the iterator object.
        if (scope->kind == SCOPE_GEN_EXPR) {
            // TODO static assert that MP_OBJ_ITER_BUF_NSLOTS == 4
            EMIT(load_null);
            compile_load_id(comp, qstr_arg);
            EMIT(load_null);
            EMIT(load_null);
        } else {
            compile_load_id(comp, qstr_arg);
            EMIT_ARG(get_iter, true);
        }

        compile_scope_comp_iter(comp, pns_comp_for, pns->nodes[0], 0);

        if (scope->kind == SCOPE_GEN_EXPR) {
            EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
        }
        EMIT(return_value);
    } else {
        assert(scope->kind == SCOPE_CLASS);
        assert(MP_PARSE_NODE_IS_STRUCT(scope->pn));
        mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)scope->pn;
        assert(MP_PARSE_NODE_STRUCT_KIND(pns) == PN_classdef);

        if (comp->pass == MP_PASS_SCOPE) {
            bool added;
            id_info_t *id_info = scope_find_or_add_id(scope, MP_QSTR___class__, &added);
            assert(added);
            id_info->kind = ID_INFO_KIND_LOCAL;
        }

        compile_load_id(comp, MP_QSTR___name__);
        compile_store_id(comp, MP_QSTR___module__);
        EMIT_ARG(load_const_str, MP_PARSE_NODE_LEAF_ARG(pns->nodes[0])); // 0 is class name
        compile_store_id(comp, MP_QSTR___qualname__);

        check_for_doc_string(comp, pns->nodes[2]);
        compile_node(comp, pns->nodes[2]); // 2 is class body

        id_info_t *id = scope_find(scope, MP_QSTR___class__);
        assert(id != NULL);
        if (id->kind == ID_INFO_KIND_LOCAL) {
            EMIT_ARG(load_const_tok, MP_TOKEN_KW_NONE);
        } else {
            EMIT_LOAD_FAST(MP_QSTR___class__, id->local_num);
        }
        EMIT(return_value);
    }

    EMIT(end_pass);

    // make sure we match all the exception levels
    assert(comp->cur_except_level == 0);
}

#if MICROPY_EMIT_INLINE_ASM
// requires 3 passes: SCOPE, CODE_SIZE, EMIT
STATIC void compile_scope_inline_asm(compiler_t *comp, scope_t *scope, pass_kind_t pass) {
    comp->pass = pass;
    comp->scope_cur = scope;
    comp->next_label = 0;

    if (scope->kind != SCOPE_FUNCTION) {
        compile_syntax_error(comp, MP_PARSE_NODE_NULL, "inline assembler must be a function");
        return;
    }

    if (comp->pass > MP_PASS_SCOPE) {
        EMIT_INLINE_ASM_ARG(start_pass, comp->pass, &comp->compile_error);
    }

    // get the function definition parse node
    assert(MP_PARSE_NODE_IS_STRUCT(scope->pn));
    mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)scope->pn;
    assert(MP_PARSE_NODE_STRUCT_KIND(pns) == PN_funcdef);

    //qstr f_id = MP_PARSE_NODE_LEAF_ARG(pns->nodes[0]); // function name

    // parameters are in pns->nodes[1]
    if (comp->pass == MP_PASS_CODE_SIZE) {
        mp_parse_node_t *pn_params;
        int n_params = mp_parse_node_extract_list(&pns->nodes[1], PN_typedargslist, &pn_params);
        scope->num_pos_args = EMIT_INLINE_ASM_ARG(count_params, n_params, pn_params);
        if (comp->compile_error != MP_OBJ_NULL) {
            goto inline_asm_error;
        }
    }

    // pns->nodes[2] is function return annotation
    mp_uint_t type_sig = MP_NATIVE_TYPE_INT;
    mp_parse_node_t pn_annotation = pns->nodes[2];
    if (!MP_PARSE_NODE_IS_NULL(pn_annotation)) {
        // nodes[2] can be null or a test-expr
        if (MP_PARSE_NODE_IS_ID(pn_annotation)) {
            qstr ret_type = MP_PARSE_NODE_LEAF_ARG(pn_annotation);
            switch (ret_type) {
                case MP_QSTR_object: type_sig = MP_NATIVE_TYPE_OBJ; break;
                case MP_QSTR_bool: type_sig = MP_NATIVE_TYPE_BOOL; break;
                case MP_QSTR_int: type_sig = MP_NATIVE_TYPE_INT; break;
                case MP_QSTR_uint: type_sig = MP_NATIVE_TYPE_UINT; break;
                default: compile_syntax_error(comp, pn_annotation, "unknown type"); return;
            }
        } else {
            compile_syntax_error(comp, pn_annotation, "return annotation must be an identifier");
        }
    }

    mp_parse_node_t pn_body = pns->nodes[3]; // body
    mp_parse_node_t *nodes;
    int num = mp_parse_node_extract_list(&pn_body, PN_suite_block_stmts, &nodes);

    for (int i = 0; i < num; i++) {
        assert(MP_PARSE_NODE_IS_STRUCT(nodes[i]));
        mp_parse_node_struct_t *pns2 = (mp_parse_node_struct_t*)nodes[i];
        if (MP_PARSE_NODE_STRUCT_KIND(pns2) == PN_pass_stmt) {
            // no instructions
            continue;
        } else if (MP_PARSE_NODE_STRUCT_KIND(pns2) != PN_expr_stmt) {
            // not an instruction; error
        not_an_instruction:
            compile_syntax_error(comp, nodes[i], "expecting an assembler instruction");
            return;
        }

        // check structure of parse node
        assert(MP_PARSE_NODE_IS_STRUCT(pns2->nodes[0]));
        if (!MP_PARSE_NODE_IS_NULL(pns2->nodes[1])) {
            goto not_an_instruction;
        }
        pns2 = (mp_parse_node_struct_t*)pns2->nodes[0];
        if (MP_PARSE_NODE_STRUCT_KIND(pns2) != PN_atom_expr_normal) {
            goto not_an_instruction;
        }
        if (!MP_PARSE_NODE_IS_ID(pns2->nodes[0])) {
            goto not_an_instruction;
        }
        if (!MP_PARSE_NODE_IS_STRUCT_KIND(pns2->nodes[1], PN_trailer_paren)) {
            goto not_an_instruction;
        }

        // parse node looks like an instruction
        // get instruction name and args
        qstr op = MP_PARSE_NODE_LEAF_ARG(pns2->nodes[0]);
        pns2 = (mp_parse_node_struct_t*)pns2->nodes[1]; // PN_trailer_paren
        mp_parse_node_t *pn_arg;
        int n_args = mp_parse_node_extract_list(&pns2->nodes[0], PN_arglist, &pn_arg);

        // emit instructions
        if (op == MP_QSTR_label) {
            if (!(n_args == 1 && MP_PARSE_NODE_IS_ID(pn_arg[0]))) {
                compile_syntax_error(comp, nodes[i], "'label' requires 1 argument");
                return;
            }
            uint lab = comp_next_label(comp);
            if (pass > MP_PASS_SCOPE) {
                if (!EMIT_INLINE_ASM_ARG(label, lab, MP_PARSE_NODE_LEAF_ARG(pn_arg[0]))) {
                    compile_syntax_error(comp, nodes[i], "label redefined");
                    return;
                }
            }
        } else if (op == MP_QSTR_align) {
            if (!(n_args == 1 && MP_PARSE_NODE_IS_SMALL_INT(pn_arg[0]))) {
                compile_syntax_error(comp, nodes[i], "'align' requires 1 argument");
                return;
            }
            if (pass > MP_PASS_SCOPE) {
                mp_asm_base_align((mp_asm_base_t*)comp->emit_inline_asm,
                    MP_PARSE_NODE_LEAF_SMALL_INT(pn_arg[0]));
            }
        } else if (op == MP_QSTR_data) {
            if (!(n_args >= 2 && MP_PARSE_NODE_IS_SMALL_INT(pn_arg[0]))) {
                compile_syntax_error(comp, nodes[i], "'data' requires at least 2 arguments");
                return;
            }
            if (pass > MP_PASS_SCOPE) {
                mp_int_t bytesize = MP_PARSE_NODE_LEAF_SMALL_INT(pn_arg[0]);
                for (uint j = 1; j < n_args; j++) {
                    if (!MP_PARSE_NODE_IS_SMALL_INT(pn_arg[j])) {
                        compile_syntax_error(comp, nodes[i], "'data' requires integer arguments");
                        return;
                    }
                    mp_asm_base_data((mp_asm_base_t*)comp->emit_inline_asm,
                        bytesize, MP_PARSE_NODE_LEAF_SMALL_INT(pn_arg[j]));
                }
            }
        } else {
            if (pass > MP_PASS_SCOPE) {
                EMIT_INLINE_ASM_ARG(op, op, n_args, pn_arg);
            }
        }

        if (comp->compile_error != MP_OBJ_NULL) {
            pns = pns2; // this is the parse node that had the error
            goto inline_asm_error;
        }
    }

    if (comp->pass > MP_PASS_SCOPE) {
        EMIT_INLINE_ASM_ARG(end_pass, type_sig);

        if (comp->pass == MP_PASS_EMIT) {
            void *f = mp_asm_base_get_code((mp_asm_base_t*)comp->emit_inline_asm);
            mp_emit_glue_assign_native(comp->scope_cur->raw_code, MP_CODE_NATIVE_ASM,
                f, mp_asm_base_get_code_size((mp_asm_base_t*)comp->emit_inline_asm),
                NULL, comp->scope_cur->num_pos_args, 0, type_sig);
        }
    }

    if (comp->compile_error != MP_OBJ_NULL) {
        // inline assembler had an error; set line for its exception
    inline_asm_error:
        comp->compile_error_line = pns->source_line;
    }
}
#endif

STATIC void scope_compute_things(scope_t *scope) {
    // in MicroPython we put the *x parameter after all other parameters (except **y)
    if (scope->scope_flags & MP_SCOPE_FLAG_VARARGS) {
        id_info_t *id_param = NULL;
        for (int i = scope->id_info_len - 1; i >= 0; i--) {
            id_info_t *id = &scope->id_info[i];
            if (id->flags & ID_FLAG_IS_STAR_PARAM) {
                if (id_param != NULL) {
                    // swap star param with last param
                    id_info_t temp = *id_param; *id_param = *id; *id = temp;
                }
                break;
            } else if (id_param == NULL && id->flags == ID_FLAG_IS_PARAM) {
                id_param = id;
            }
        }
    }

    // in functions, turn implicit globals into explicit globals
    // compute the index of each local
    scope->num_locals = 0;
    for (int i = 0; i < scope->id_info_len; i++) {
        id_info_t *id = &scope->id_info[i];
        if (scope->kind == SCOPE_CLASS && id->qst == MP_QSTR___class__) {
            // __class__ is not counted as a local; if it's used then it becomes a ID_INFO_KIND_CELL
            continue;
        }
        if (SCOPE_IS_FUNC_LIKE(scope->kind) && id->kind == ID_INFO_KIND_GLOBAL_IMPLICIT) {
            id->kind = ID_INFO_KIND_GLOBAL_EXPLICIT;
        }
        // params always count for 1 local, even if they are a cell
        if (id->kind == ID_INFO_KIND_LOCAL || (id->flags & ID_FLAG_IS_PARAM)) {
            id->local_num = scope->num_locals++;
        }
    }

    // compute the index of cell vars
    for (int i = 0; i < scope->id_info_len; i++) {
        id_info_t *id = &scope->id_info[i];
        // in MicroPython the cells come right after the fast locals
        // parameters are not counted here, since they remain at the start
        // of the locals, even if they are cell vars
        if (id->kind == ID_INFO_KIND_CELL && !(id->flags & ID_FLAG_IS_PARAM)) {
            id->local_num = scope->num_locals;
            scope->num_locals += 1;
        }
    }

    // compute the index of free vars
    // make sure they are in the order of the parent scope
    if (scope->parent != NULL) {
        int num_free = 0;
        for (int i = 0; i < scope->parent->id_info_len; i++) {
            id_info_t *id = &scope->parent->id_info[i];
            if (id->kind == ID_INFO_KIND_CELL || id->kind == ID_INFO_KIND_FREE) {
                for (int j = 0; j < scope->id_info_len; j++) {
                    id_info_t *id2 = &scope->id_info[j];
                    if (id2->kind == ID_INFO_KIND_FREE && id->qst == id2->qst) {
                        assert(!(id2->flags & ID_FLAG_IS_PARAM)); // free vars should not be params
                        // in MicroPython the frees come first, before the params
                        id2->local_num = num_free;
                        num_free += 1;
                    }
                }
            }
        }
        // in MicroPython shift all other locals after the free locals
        if (num_free > 0) {
            for (int i = 0; i < scope->id_info_len; i++) {
                id_info_t *id = &scope->id_info[i];
                if (id->kind != ID_INFO_KIND_FREE || (id->flags & ID_FLAG_IS_PARAM)) {
                    id->local_num += num_free;
                }
            }
            scope->num_pos_args += num_free; // free vars are counted as params for passing them into the function
            scope->num_locals += num_free;
        }
    }
}

#if !MICROPY_PERSISTENT_CODE_SAVE
STATIC
#endif
mp_raw_code_t *mp_compile_to_raw_code(mp_parse_tree_t *parse_tree, qstr source_file, uint emit_opt, bool is_repl) {
    // put compiler state on the stack, it's relatively small
    compiler_t comp_state = {0};
    compiler_t *comp = &comp_state;

    comp->source_file = source_file;
    comp->is_repl = is_repl;
    comp->break_label = INVALID_LABEL;
    comp->continue_label = INVALID_LABEL;

    // create the module scope
    scope_t *module_scope = scope_new_and_link(comp, SCOPE_MODULE, parse_tree->root, emit_opt);

    // create standard emitter; it's used at least for MP_PASS_SCOPE
    emit_t *emit_bc = emit_bc_new();

    // compile pass 1
    comp->emit = emit_bc;
    #if MICROPY_EMIT_NATIVE
    comp->emit_method_table = &emit_bc_method_table;
    #endif
    uint max_num_labels = 0;
    for (scope_t *s = comp->scope_head; s != NULL && comp->compile_error == MP_OBJ_NULL; s = s->next) {
        if (false) {
        #if MICROPY_EMIT_INLINE_ASM
        } else if (s->emit_options == MP_EMIT_OPT_ASM) {
            compile_scope_inline_asm(comp, s, MP_PASS_SCOPE);
        #endif
        } else {
            compile_scope(comp, s, MP_PASS_SCOPE);
        }

        // update maximim number of labels needed
        if (comp->next_label > max_num_labels) {
            max_num_labels = comp->next_label;
        }
    }

    // compute some things related to scope and identifiers
    for (scope_t *s = comp->scope_head; s != NULL && comp->compile_error == MP_OBJ_NULL; s = s->next) {
        scope_compute_things(s);
    }

    // set max number of labels now that it's calculated
    emit_bc_set_max_num_labels(emit_bc, max_num_labels);

    // compile pass 2 and 3
#if MICROPY_EMIT_NATIVE
    emit_t *emit_native = NULL;
#endif
    for (scope_t *s = comp->scope_head; s != NULL && comp->compile_error == MP_OBJ_NULL; s = s->next) {
        if (false) {
            // dummy

        #if MICROPY_EMIT_INLINE_ASM
        } else if (s->emit_options == MP_EMIT_OPT_ASM) {
            // inline assembly
            if (comp->emit_inline_asm == NULL) {
                comp->emit_inline_asm = ASM_EMITTER(new)(max_num_labels);
            }
            comp->emit = NULL;
            comp->emit_inline_asm_method_table = &ASM_EMITTER(method_table);
            compile_scope_inline_asm(comp, s, MP_PASS_CODE_SIZE);
            #if MICROPY_EMIT_INLINE_XTENSA
            // Xtensa requires an extra pass to compute size of l32r const table
            // TODO this can be improved by calculating it during SCOPE pass
            // but that requires some other structural changes to the asm emitters
            compile_scope_inline_asm(comp, s, MP_PASS_CODE_SIZE);
            #endif
            if (comp->compile_error == MP_OBJ_NULL) {
                compile_scope_inline_asm(comp, s, MP_PASS_EMIT);
            }
        #endif

        } else {

            // choose the emit type

            switch (s->emit_options) {

#if MICROPY_EMIT_NATIVE
                case MP_EMIT_OPT_NATIVE_PYTHON:
                case MP_EMIT_OPT_VIPER:
                    if (emit_native == NULL) {
                        emit_native = NATIVE_EMITTER(new)(&comp->compile_error, max_num_labels);
                    }
                    comp->emit_method_table = &NATIVE_EMITTER(method_table);
                    comp->emit = emit_native;
                    EMIT_ARG(set_native_type, MP_EMIT_NATIVE_TYPE_ENABLE, s->emit_options == MP_EMIT_OPT_VIPER, 0);
                    break;
#endif // MICROPY_EMIT_NATIVE

                default:
                    comp->emit = emit_bc;
                    #if MICROPY_EMIT_NATIVE
                    comp->emit_method_table = &emit_bc_method_table;
                    #endif
                    break;
            }

            // need a pass to compute stack size
            compile_scope(comp, s, MP_PASS_STACK_SIZE);

            // second last pass: compute code size
            if (comp->compile_error == MP_OBJ_NULL) {
                compile_scope(comp, s, MP_PASS_CODE_SIZE);
            }

            // final pass: emit code
            if (comp->compile_error == MP_OBJ_NULL) {
                compile_scope(comp, s, MP_PASS_EMIT);
            }
        }
    }

    if (comp->compile_error != MP_OBJ_NULL) {
        // if there is no line number for the error then use the line
        // number for the start of this scope
        compile_error_set_line(comp, comp->scope_cur->pn);
        // add a traceback to the exception using relevant source info
        mp_obj_exception_add_traceback(comp->compile_error, comp->source_file,
            comp->compile_error_line, comp->scope_cur->simple_name);
    }

    // free the emitters

    emit_bc_free(emit_bc);
#if MICROPY_EMIT_NATIVE
    if (emit_native != NULL) {
        NATIVE_EMITTER(free)(emit_native);
    }
#endif
    #if MICROPY_EMIT_INLINE_ASM
    if (comp->emit_inline_asm != NULL) {
        ASM_EMITTER(free)(comp->emit_inline_asm);
    }
    #endif

    // free the parse tree
    mp_parse_tree_clear(parse_tree);

    // free the scopes
    mp_raw_code_t *outer_raw_code = module_scope->raw_code;
    for (scope_t *s = module_scope; s;) {
        scope_t *next = s->next;
        scope_free(s);
        s = next;
    }

    if (comp->compile_error != MP_OBJ_NULL) {
        nlr_raise(comp->compile_error);
    } else {
        return outer_raw_code;
    }
}

mp_obj_t mp_compile(mp_parse_tree_t *parse_tree, qstr source_file, uint emit_opt, bool is_repl) {
    mp_raw_code_t *rc = mp_compile_to_raw_code(parse_tree, source_file, emit_opt, is_repl);
    // return function that executes the outer module
    return mp_make_function_from_raw_code(rc, MP_OBJ_NULL, MP_OBJ_NULL);
}

#endif // MICROPY_ENABLE_COMPILER