CircuitPython

Source code browser

Note: This site will be taken down by the end of the year

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
/**
  ******************************************************************************
  * @file    stm32l4xx_hal_rcc.c
  * @author  MCD Application Team
  * @version V1.3.0
  * @date    29-January-2016
  * @brief   RCC HAL module driver.
  *          This file provides firmware functions to manage the following
  *          functionalities of the Reset and Clock Control (RCC) peripheral:
  *           + Initialization and de-initialization functions
  *           + Peripheral Control functions
  *
  @verbatim
  ==============================================================================
                      ##### RCC specific features #####
  ==============================================================================
    [..]
      After reset the device is running from Multiple Speed Internal oscillator
      (4 MHz) with Flash 0 wait state. Flash prefetch buffer, D-Cache
      and I-Cache are disabled, and all peripherals are off except internal
      SRAM, Flash and JTAG.

      (+) There is no prescaler on High speed (AHBs) and Low speed (APBs) busses:
          all peripherals mapped on these busses are running at MSI speed.
      (+) The clock for all peripherals is switched off, except the SRAM and FLASH.
      (+) All GPIOs are in analog mode, except the JTAG pins which
          are assigned to be used for debug purpose.

    [..]
      Once the device started from reset, the user application has to:
      (+) Configure the clock source to be used to drive the System clock
          (if the application needs higher frequency/performance)
      (+) Configure the System clock frequency and Flash settings
      (+) Configure the AHB and APB busses prescalers
      (+) Enable the clock for the peripheral(s) to be used
      (+) Configure the clock source(s) for peripherals which clocks are not
          derived from the System clock (SAIx, RTC, ADC, USB OTG FS/SDMMC1/RNG)

  @endverbatim
  ******************************************************************************
  * @attention
  *
  * <h2><center>&copy; COPYRIGHT(c) 2016 STMicroelectronics</center></h2>
  *
  * Redistribution and use in source and binary forms, with or without modification,
  * are permitted provided that the following conditions are met:
  *   1. Redistributions of source code must retain the above copyright notice,
  *      this list of conditions and the following disclaimer.
  *   2. Redistributions in binary form must reproduce the above copyright notice,
  *      this list of conditions and the following disclaimer in the documentation
  *      and/or other materials provided with the distribution.
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
  *      may be used to endorse or promote products derived from this software
  *      without specific prior written permission.
  *
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  *
  ******************************************************************************
  */

/* Includes ------------------------------------------------------------------*/
#include "stm32l4xx_hal.h"

/** @addtogroup STM32L4xx_HAL_Driver
  * @{
  */

/** @defgroup RCC RCC
  * @brief RCC HAL module driver
  * @{
  */

#ifdef HAL_RCC_MODULE_ENABLED

/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/** @defgroup RCC_Private_Constants RCC Private Constants
 * @{
 */
#define HSE_TIMEOUT_VALUE          HSE_STARTUP_TIMEOUT
#define HSI_TIMEOUT_VALUE          ((uint32_t)2U)    /* 2 ms (minimum Tick + 1) */
#define MSI_TIMEOUT_VALUE          ((uint32_t)2U)    /* 2 ms (minimum Tick + 1) */  
#define LSI_TIMEOUT_VALUE          ((uint32_t)2U)    /* 2 ms (minimum Tick + 1) */
#define PLL_TIMEOUT_VALUE          ((uint32_t)2U)    /* 2 ms (minimum Tick + 1) */
#define CLOCKSWITCH_TIMEOUT_VALUE  ((uint32_t)5000U) /* 5 s    */

#define PLLSOURCE_NONE             ((uint32_t)0U)
/**
  * @}
  */

/* Private macro -------------------------------------------------------------*/
/** @defgroup RCC_Private_Macros RCC Private Macros
  * @{
  */
#define __MCO1_CLK_ENABLE()   __HAL_RCC_GPIOA_CLK_ENABLE()
#define MCO1_GPIO_PORT        GPIOA
#define MCO1_PIN              GPIO_PIN_8

#define RCC_PLL_OSCSOURCE_CONFIG(__HAL_RCC_PLLSOURCE__) \
            (MODIFY_REG(RCC->PLLCFGR, RCC_PLLCFGR_PLLSRC, (uint32_t)(__HAL_RCC_PLLSOURCE__)))
/**
  * @}
  */

/* Private variables ---------------------------------------------------------*/
/** @defgroup RCC_Private_Variables RCC Private Variables
  * @{
  */

/**
  * @}
  */

/* Private function prototypes -----------------------------------------------*/
/** @defgroup RCC_Private_Functions RCC Private Functions
  * @{
  */
static HAL_StatusTypeDef RCC_SetFlashLatencyFromMSIRange(uint32_t msirange);
/**
  * @}
  */

/* Exported functions --------------------------------------------------------*/

/** @defgroup RCC_Exported_Functions RCC Exported Functions
  * @{
  */

/** @defgroup RCC_Exported_Functions_Group1 Initialization and de-initialization functions
  *  @brief    Initialization and Configuration functions
  *
  @verbatim
 ===============================================================================
           ##### Initialization and de-initialization functions #####
 ===============================================================================
    [..]
      This section provides functions allowing to configure the internal and external oscillators
      (HSE, HSI, LSE, MSI, LSI, PLL, CSS and MCO) and the System busses clocks (SYSCLK, AHB, APB1
       and APB2).

    [..] Internal/external clock and PLL configuration
         (+) HSI (high-speed internal): 16 MHz factory-trimmed RC used directly or through
             the PLL as System clock source.
             
         (+) MSI (Mutiple Speed Internal): Its frequency is software trimmable from 100KHZ to 48MHZ.
             It can be used to generate the clock for the USB OTG FS (48 MHz).
             The number of flash wait states is automatically adjusted when MSI range is updated with 
             HAL_RCC_OscConfig() and the MSI is used as System clock source. 

         (+) LSI (low-speed internal): 32 KHz low consumption RC used as IWDG and/or RTC
             clock source.

         (+) HSE (high-speed external): 4 to 48 MHz crystal oscillator used directly or
             through the PLL as System clock source. Can be used also optionally as RTC clock source.

         (+) LSE (low-speed external): 32.768 KHz oscillator used optionally as RTC clock source.

         (+) PLL (clocked by HSI, HSE or MSI) providing up to three independent output clocks:
           (++) The first output is used to generate the high speed system clock (up to 80MHz).
           (++) The second output is used to generate the clock for the USB OTG FS (48 MHz),
                the random analog generator (<=48 MHz) and the SDMMC1 (<= 48 MHz).
           (++) The third output is used to generate an accurate clock to achieve
                high-quality audio performance on SAI interface.

         (+) PLLSAI1 (clocked by HSI, HSE or MSI) providing up to three independent output clocks:
           (++) The first output is used to generate SAR ADC1 clock.
           (++) The second output is used to generate the clock for the USB OTG FS (48 MHz),
                the random analog generator (<=48 MHz) and the SDMMC1 (<= 48 MHz).
           (++) The Third output is used to generate an accurate clock to achieve
                high-quality audio performance on SAI interface.

         (+) PLLSAI2 (clocked by HSI , HSE or MSI) providing up to two independent output clocks:
           (++) The first output is used to generate SAR ADC2 clock.
           (++) The second  output is used to generate an accurate clock to achieve
                high-quality audio performance on SAI interface.

         (+) CSS (Clock security system): once enabled, if a HSE clock failure occurs
            (HSE used directly or through PLL as System clock source), the System clock
             is automatically switched to HSI and an interrupt is generated if enabled.
             The interrupt is linked to the Cortex-M4 NMI (Non-Maskable Interrupt)
             exception vector.

         (+) MCO (microcontroller clock output): used to output MSI, LSI, HSI, LSE, HSE or
             main PLL clock (through a configurable prescaler) on PA8 pin.

    [..] System, AHB and APB busses clocks configuration
         (+) Several clock sources can be used to drive the System clock (SYSCLK): MSI, HSI,
             HSE and main PLL.
             The AHB clock (HCLK) is derived from System clock through configurable
             prescaler and used to clock the CPU, memory and peripherals mapped
             on AHB bus (DMA, GPIO...). APB1 (PCLK1) and APB2 (PCLK2) clocks are derived
             from AHB clock through configurable prescalers and used to clock
             the peripherals mapped on these busses. You can use
             "HAL_RCC_GetSysClockFreq()" function to retrieve the frequencies of these clocks.

         -@- All the peripheral clocks are derived from the System clock (SYSCLK) except:

           (+@) SAI: the SAI clock can be derived either from a specific PLL (PLLSAI1) or (PLLSAI2) or
                from an external clock mapped on the SAI_CKIN pin.
                You have to use HAL_RCCEx_PeriphCLKConfig() function to configure this clock.
           (+@) RTC: the RTC clock can be derived either from the LSI, LSE or HSE clock
                divided by 2 to 31.
                You have to use __HAL_RCC_RTC_ENABLE() and HAL_RCCEx_PeriphCLKConfig() function
                to configure this clock.
           (+@) USB OTG FS, SDMMC1 and RNG: USB OTG FS requires a frequency equal to 48 MHz
                to work correctly, while the SDMMC1 and RNG peripherals require a frequency 
                equal or lower than to 48 MHz. This clock is derived of the main PLL or PLLSAI1
                through PLLQ divider. You have to enable the peripheral clock and use 
                HAL_RCCEx_PeriphCLKConfig() function to configure this clock.
           (+@) IWDG clock which is always the LSI clock.


         (+) The maximum frequency of the SYSCLK, HCLK, PCLK1 and PCLK2 is 80 MHz. 
             The clock source frequency should be adapted depending on the device voltage range
             as listed in the Reference Manual "Clock source frequency versus voltage scaling" chapter.

  @endverbatim
             
           Table 1. HCLK clock frequency.             
           +-------------------------------------------------------+     
           | Latency         |    HCLK clock frequency (MHz)       |
           |                 |-------------------------------------|     
           |                 | voltage range 1  | voltage range 2  |
           |                 |      1.2 V       |     1.0 V        |
           |-----------------|------------------|------------------|          
           |0WS(1 CPU cycles)|  0 < HCLK <= 16  |  0 < HCLK <= 6   |
           |-----------------|------------------|------------------|
           |1WS(2 CPU cycles)| 16 < HCLK <= 32  |  6 < HCLK <= 12  |
           |-----------------|------------------|------------------|
           |2WS(3 CPU cycles)| 32 < HCLK <= 48  | 12 < HCLK <= 18  |
           |-----------------|------------------|------------------|
           |3WS(4 CPU cycles)| 48 < HCLK <= 64  | 18 < HCLK <= 26  |
           |-----------------|------------------|------------------|
           |4WS(5 CPU cycles)| 64 < HCLK <= 80  | 18 < HCLK <= 26  |
           +-------------------------------------------------------+   
  * @{
  */

/**
  * @brief  Reset the RCC clock configuration to the default reset state.
  * @note   The default reset state of the clock configuration is given below:
  *            - MSI ON and used as system clock source
  *            - HSE, HSI, PLL, PLLSAI1 and PLLISAI2 OFF
  *            - AHB, APB1 and APB2 prescaler set to 1.
  *            - CSS, MCO1 OFF
  *            - All interrupts disabled
  * @note   This function doesn't modify the configuration of the
  *            - Peripheral clocks
  *            - LSI, LSE and RTC clocks
  * @retval None
  */
void HAL_RCC_DeInit(void)
{
  /* Set MSION bit */
  SET_BIT(RCC->CR, RCC_CR_MSION);

  /* Insure MSIRDY bit is set before writing default MSIRANGE value */
  while(READ_BIT(RCC->CR, RCC_CR_MSIRDY) == RESET) { __NOP(); }
  
  /* Set MSIRANGE default value */
  MODIFY_REG(RCC->CR, RCC_CR_MSIRANGE, RCC_MSIRANGE_6);
  
  /* Reset CFGR register (MSI is selected as system clock source) */
  CLEAR_REG(RCC->CFGR);

  /* Reset HSION, HSIKERON, HSIASFS, HSEON, HSECSSON, PLLON, PLLSAIxON bits */
  CLEAR_BIT(RCC->CR, RCC_CR_HSEON | RCC_CR_HSION | RCC_CR_HSIKERON| RCC_CR_HSIASFS | RCC_CR_PLLON | RCC_CR_PLLSAI1ON | RCC_CR_PLLSAI2ON);
  
  /* Reset PLLCFGR register */
  CLEAR_REG(RCC->PLLCFGR);
  SET_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLN_4 );

  /* Reset PLLSAI1CFGR register */
  CLEAR_REG(RCC->PLLSAI1CFGR);
  SET_BIT(RCC->PLLSAI1CFGR,  RCC_PLLSAI1CFGR_PLLSAI1N_4 );

  /* Reset PLLSAI2CFGR register */
  CLEAR_REG(RCC->PLLSAI2CFGR);
  SET_BIT(RCC->PLLSAI2CFGR,  RCC_PLLSAI2CFGR_PLLSAI2N_4 );

  /* Reset HSEBYP bit */
  CLEAR_BIT(RCC->CR, RCC_CR_HSEBYP);

  /* Disable all interrupts */
  CLEAR_REG(RCC->CIER);

  /* Update the SystemCoreClock global variable */
  SystemCoreClock = MSI_VALUE;
}

/**
  * @brief  Initialize the RCC Oscillators according to the specified parameters in the
  *         RCC_OscInitTypeDef.
  * @param  RCC_OscInitStruct  pointer to an RCC_OscInitTypeDef structure that
  *         contains the configuration information for the RCC Oscillators.
  * @note   The PLL is not disabled when used as system clock.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_RCC_OscConfig(RCC_OscInitTypeDef  *RCC_OscInitStruct)
{
  uint32_t tickstart = 0;

  /* Check the parameters */
  assert_param(RCC_OscInitStruct != NULL);
  assert_param(IS_RCC_OSCILLATORTYPE(RCC_OscInitStruct->OscillatorType));

  /*----------------------------- MSI Configuration --------------------------*/
  if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_MSI) == RCC_OSCILLATORTYPE_MSI)
  {
    /* Check the parameters */
    assert_param(IS_RCC_MSI(RCC_OscInitStruct->MSIState));
    assert_param(IS_RCC_MSICALIBRATION_VALUE(RCC_OscInitStruct->MSICalibrationValue));
    assert_param(IS_RCC_MSI_CLOCK_RANGE(RCC_OscInitStruct->MSIClockRange));

    /* When the MSI is used as system clock it will not be disabled */
    if((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_CFGR_SWS_MSI) )
    {
      if((READ_BIT(RCC->CR, RCC_CR_MSIRDY) != RESET) && (RCC_OscInitStruct->MSIState == RCC_MSI_OFF))
      {
        return HAL_ERROR;
      }

       /* Otherwise, just the calibration and MSI range change are allowed */
      else
      {
        /* To correctly read data from FLASH memory, the number of wait states (LATENCY)
           must be correctly programmed according to the frequency of the CPU clock
           (HCLK) and the supply voltage of the device. */
        if(RCC_OscInitStruct->MSIClockRange > __HAL_RCC_GET_MSI_RANGE())
        {
          /* First increase number of wait states update if necessary */
          if(RCC_SetFlashLatencyFromMSIRange(RCC_OscInitStruct->MSIClockRange) != HAL_OK)
          {
            return HAL_ERROR;
          }

          /* Selects the Multiple Speed oscillator (MSI) clock range .*/
          __HAL_RCC_MSI_RANGE_CONFIG(RCC_OscInitStruct->MSIClockRange);
          /* Adjusts the Multiple Speed oscillator (MSI) calibration value.*/
          __HAL_RCC_MSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->MSICalibrationValue);
        }
        else
        {
          /* Else, keep current flash latency while decreasing applies */
          /* Selects the Multiple Speed oscillator (MSI) clock range .*/
          __HAL_RCC_MSI_RANGE_CONFIG(RCC_OscInitStruct->MSIClockRange);
          /* Adjusts the Multiple Speed oscillator (MSI) calibration value.*/
          __HAL_RCC_MSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->MSICalibrationValue);

          /* Decrease number of wait states update if necessary */
          if(RCC_SetFlashLatencyFromMSIRange(RCC_OscInitStruct->MSIClockRange) != HAL_OK)
          {
            return HAL_ERROR;
          }          
        }

        /* Update the SystemCoreClock global variable */
        SystemCoreClock = HAL_RCC_GetSysClockFreq() >> AHBPrescTable[(RCC->CFGR & RCC_CFGR_HPRE)>> POSITION_VAL(RCC_CFGR_HPRE)];
        
        /* Configure the source of time base considering new system clocks settings*/
        HAL_InitTick (TICK_INT_PRIORITY);
      }
    }
    else
    {
      /* Check the MSI State */
      if(RCC_OscInitStruct->MSIState != RCC_MSI_OFF)
      {
        /* Enable the Internal High Speed oscillator (MSI). */
        __HAL_RCC_MSI_ENABLE();

        /* Get timeout */
        tickstart = HAL_GetTick();

        /* Wait till MSI is ready */
        while(READ_BIT(RCC->CR, RCC_CR_MSIRDY) == RESET)
        {
          if((HAL_GetTick() - tickstart) > MSI_TIMEOUT_VALUE)
          {
            return HAL_TIMEOUT;
          }
        }
         /* Selects the Multiple Speed oscillator (MSI) clock range .*/
        __HAL_RCC_MSI_RANGE_CONFIG(RCC_OscInitStruct->MSIClockRange);
         /* Adjusts the Multiple Speed oscillator (MSI) calibration value.*/
        __HAL_RCC_MSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->MSICalibrationValue);

      }
      else
      {
        /* Disable the Internal High Speed oscillator (MSI). */
        __HAL_RCC_MSI_DISABLE();

        /* Get timeout */
        tickstart = HAL_GetTick();

        /* Wait till MSI is ready */
        while(READ_BIT(RCC->CR, RCC_CR_MSIRDY) != RESET)
        {
          if((HAL_GetTick() - tickstart) > MSI_TIMEOUT_VALUE)
          {
            return HAL_TIMEOUT;
          }
        }
      }
    }
  }
  /*------------------------------- HSE Configuration ------------------------*/
  if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSE) == RCC_OSCILLATORTYPE_HSE)
  {
    /* Check the parameters */
    assert_param(IS_RCC_HSE(RCC_OscInitStruct->HSEState));

    /* When the HSE is used as system clock or clock source for PLL in these cases it is not allowed to be disabled */
    if((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_CFGR_SWS_HSE) || 
       ((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_CFGR_SWS_PLL) && (__HAL_RCC_GET_PLL_OSCSOURCE() == RCC_PLLSOURCE_HSE)))
    {
      if((READ_BIT(RCC->CR, RCC_CR_HSERDY) != RESET) && (RCC_OscInitStruct->HSEState == RCC_HSE_OFF))
      {
        return HAL_ERROR;
      }
    }
    else
    {
      /* Reset HSEON and HSEBYP bits before configuring the HSE --------------*/
      __HAL_RCC_HSE_CONFIG(RCC_HSE_OFF);

      /* Get Start Tick*/
      tickstart = HAL_GetTick();

      /* Wait till HSE is disabled */
      while(READ_BIT(RCC->CR, RCC_CR_HSERDY) != RESET)
      {
        if((HAL_GetTick() - tickstart) > HSE_TIMEOUT_VALUE)
        {
          return HAL_TIMEOUT;
        }
      }

      /* Set the new HSE configuration ---------------------------------------*/
      __HAL_RCC_HSE_CONFIG(RCC_OscInitStruct->HSEState);

      /* Check the HSE State */
      if(RCC_OscInitStruct->HSEState != RCC_HSE_OFF)
      {
        /* Get Start Tick*/
        tickstart = HAL_GetTick();

        /* Wait till HSE is ready */
        while(READ_BIT(RCC->CR, RCC_CR_HSERDY) == RESET)
        {
          if((HAL_GetTick() - tickstart) > HSE_TIMEOUT_VALUE)
          {
            return HAL_TIMEOUT;
          }
        }
      }
      else
      {
        /* Get Start Tick*/
        tickstart = HAL_GetTick();

        /* Wait till HSE is disabled */
        while(READ_BIT(RCC->CR, RCC_CR_HSERDY) != RESET)
        {
          if((HAL_GetTick() - tickstart) > HSE_TIMEOUT_VALUE)
          {
            return HAL_TIMEOUT;
          }
        }
      }
    }
  }
  /*----------------------------- HSI Configuration --------------------------*/
  if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSI) == RCC_OSCILLATORTYPE_HSI)
  {
    /* Check the parameters */
    assert_param(IS_RCC_HSI(RCC_OscInitStruct->HSIState));
    assert_param(IS_RCC_HSI_CALIBRATION_VALUE(RCC_OscInitStruct->HSICalibrationValue));

    /* Check if HSI is used as system clock or as PLL source when PLL is selected as system clock */ 
    if((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_CFGR_SWS_HSI) ||
       ((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_CFGR_SWS_PLL) && (__HAL_RCC_GET_PLL_OSCSOURCE() == RCC_PLLSOURCE_HSI)))
    {
      /* When HSI is used as system clock it will not be disabled */
      if((READ_BIT(RCC->CR, RCC_CR_HSIRDY) != RESET) && (RCC_OscInitStruct->HSIState == RCC_HSI_OFF))
      {
        return HAL_ERROR;
      }
      /* Otherwise, just the calibration is allowed */
      else
      {
        /* Adjusts the Internal High Speed oscillator (HSI) calibration value.*/
        __HAL_RCC_HSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->HSICalibrationValue);
      }
    }
    else
    {
      /* Check the HSI State */
      if(RCC_OscInitStruct->HSIState != RCC_HSI_OFF)
      {
        /* Enable the Internal High Speed oscillator (HSI). */
        __HAL_RCC_HSI_ENABLE();

        /* Get Start Tick*/
        tickstart = HAL_GetTick();

        /* Wait till HSI is ready */
        while(READ_BIT(RCC->CR, RCC_CR_HSIRDY) == RESET)
        {
          if((HAL_GetTick() - tickstart) > HSI_TIMEOUT_VALUE)
          {
            return HAL_TIMEOUT;
          }
        }

        /* Adjusts the Internal High Speed oscillator (HSI) calibration value.*/
        __HAL_RCC_HSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->HSICalibrationValue);
      }
      else
      {
        /* Disable the Internal High Speed oscillator (HSI). */
        __HAL_RCC_HSI_DISABLE();

        /* Get Start Tick*/
        tickstart = HAL_GetTick();

        /* Wait till HSI is disabled */
        while(READ_BIT(RCC->CR, RCC_CR_HSIRDY) != RESET)
        {
          if((HAL_GetTick() - tickstart) > HSI_TIMEOUT_VALUE)
          {
            return HAL_TIMEOUT;
          }
        }
      }
    }
  }
  /*------------------------------ LSI Configuration -------------------------*/
  if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_LSI) == RCC_OSCILLATORTYPE_LSI)
  {
    /* Check the parameters */
    assert_param(IS_RCC_LSI(RCC_OscInitStruct->LSIState));

    /* Check the LSI State */
    if(RCC_OscInitStruct->LSIState != RCC_LSI_OFF)
    {
      /* Enable the Internal Low Speed oscillator (LSI). */
      __HAL_RCC_LSI_ENABLE();

      /* Get Start Tick*/
      tickstart = HAL_GetTick();

      /* Wait till LSI is ready */
      while(READ_BIT(RCC->CSR, RCC_CSR_LSIRDY) == RESET)
      {
        if((HAL_GetTick() - tickstart) > LSI_TIMEOUT_VALUE)
        {
          return HAL_TIMEOUT;
        }
      }
    }
    else
    {
      /* Disable the Internal Low Speed oscillator (LSI). */
      __HAL_RCC_LSI_DISABLE();

      /* Get Start Tick*/
      tickstart = HAL_GetTick();

      /* Wait till LSI is disabled */
      while(READ_BIT(RCC->CSR, RCC_CSR_LSIRDY) != RESET)
      {
        if((HAL_GetTick() - tickstart) > LSI_TIMEOUT_VALUE)
        {
          return HAL_TIMEOUT;
        }
      }
    }
  }
  /*------------------------------ LSE Configuration -------------------------*/
  if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_LSE) == RCC_OSCILLATORTYPE_LSE)
  {
    FlagStatus       pwrclkchanged = RESET;
    
    /* Check the parameters */
    assert_param(IS_RCC_LSE(RCC_OscInitStruct->LSEState));

    /* Update LSE configuration in Backup Domain control register    */
    /* Requires to enable write access to Backup Domain of necessary */
    if(HAL_IS_BIT_CLR(RCC->APB1ENR1, RCC_APB1ENR1_PWREN))
    {
      __HAL_RCC_PWR_CLK_ENABLE();
      pwrclkchanged = SET;
    }
    
    if(HAL_IS_BIT_CLR(PWR->CR1, PWR_CR1_DBP))
    {
      /* Enable write access to Backup domain */
      SET_BIT(PWR->CR1, PWR_CR1_DBP);
      
      /* Wait for Backup domain Write protection disable */
      tickstart = HAL_GetTick();

      while(HAL_IS_BIT_CLR(PWR->CR1, PWR_CR1_DBP))
      {
        if((HAL_GetTick() - tickstart) > RCC_DBP_TIMEOUT_VALUE)
        {
          return HAL_TIMEOUT;
        }
      }
    }

    /* Set the new LSE configuration -----------------------------------------*/
    __HAL_RCC_LSE_CONFIG(RCC_OscInitStruct->LSEState);

    /* Check the LSE State */
    if(RCC_OscInitStruct->LSEState != RCC_LSE_OFF)
    {
      /* Get Start Tick*/
      tickstart = HAL_GetTick();

      /* Wait till LSE is ready */
      while(READ_BIT(RCC->BDCR, RCC_BDCR_LSERDY) == RESET)
      {
        if((HAL_GetTick() - tickstart) > RCC_LSE_TIMEOUT_VALUE)
        {
          return HAL_TIMEOUT;
        }
      }
    }
    else
    {
      /* Get Start Tick*/
      tickstart = HAL_GetTick();

      /* Wait till LSE is disabled */
      while(READ_BIT(RCC->BDCR, RCC_BDCR_LSERDY) != RESET)
      {
        if((HAL_GetTick() - tickstart) > RCC_LSE_TIMEOUT_VALUE)
        {
          return HAL_TIMEOUT;
        }
      }
    }

    /* Restore clock configuration if changed */
    if(pwrclkchanged == SET)
    {
      __HAL_RCC_PWR_CLK_DISABLE();
    }
  }
  /*-------------------------------- PLL Configuration -----------------------*/
  /* Check the parameters */
  assert_param(IS_RCC_PLL(RCC_OscInitStruct->PLL.PLLState));

  if(RCC_OscInitStruct->PLL.PLLState != RCC_PLL_NONE)
  {
    /* Check if the PLL is used as system clock or not */
    if(__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_CFGR_SWS_PLL)
    {
      if(RCC_OscInitStruct->PLL.PLLState == RCC_PLL_ON)
      {
        /* Check the parameters */
        assert_param(IS_RCC_PLLSOURCE(RCC_OscInitStruct->PLL.PLLSource));
        assert_param(IS_RCC_PLLM_VALUE(RCC_OscInitStruct->PLL.PLLM));
        assert_param(IS_RCC_PLLN_VALUE(RCC_OscInitStruct->PLL.PLLN));
        assert_param(IS_RCC_PLLP_VALUE(RCC_OscInitStruct->PLL.PLLP));
        assert_param(IS_RCC_PLLQ_VALUE(RCC_OscInitStruct->PLL.PLLQ));
        assert_param(IS_RCC_PLLR_VALUE(RCC_OscInitStruct->PLL.PLLR));

        /* Disable the main PLL. */
        __HAL_RCC_PLL_DISABLE();

        /* Get Start Tick*/
        tickstart = HAL_GetTick();

        /* Wait till PLL is ready */
        while(READ_BIT(RCC->CR, RCC_CR_PLLRDY) != RESET)
        {
          if((HAL_GetTick() - tickstart) > PLL_TIMEOUT_VALUE)
          {
            return HAL_TIMEOUT;
          }
        }

        /* Configure the main PLL clock source, multiplication and division factors. */
        __HAL_RCC_PLL_CONFIG(RCC_OscInitStruct->PLL.PLLSource,
                             RCC_OscInitStruct->PLL.PLLM,
                             RCC_OscInitStruct->PLL.PLLN,
                             RCC_OscInitStruct->PLL.PLLP,
                             RCC_OscInitStruct->PLL.PLLQ,
                             RCC_OscInitStruct->PLL.PLLR);

        /* Enable the main PLL. */
        __HAL_RCC_PLL_ENABLE();

        /* Enable PLL System Clock output. */
         __HAL_RCC_PLLCLKOUT_ENABLE(RCC_PLL_SYSCLK);

        /* Get Start Tick*/
        tickstart = HAL_GetTick();

        /* Wait till PLL is ready */
        while(READ_BIT(RCC->CR, RCC_CR_PLLRDY) == RESET)
        {
          if((HAL_GetTick() - tickstart) > PLL_TIMEOUT_VALUE)
          {
            return HAL_TIMEOUT;
          }
        }
      }
      else
      {
        /* Disable the main PLL. */
        __HAL_RCC_PLL_DISABLE();

        /* Disable all PLL outputs to save power */
        MODIFY_REG(RCC->PLLCFGR, RCC_PLLCFGR_PLLSRC, PLLSOURCE_NONE);
        __HAL_RCC_PLLCLKOUT_DISABLE(RCC_PLL_SYSCLK | RCC_PLL_48M1CLK | RCC_PLL_SAI3CLK);

        /* Get Start Tick*/
        tickstart = HAL_GetTick();

        /* Wait till PLL is disabled */
        while(READ_BIT(RCC->CR, RCC_CR_PLLRDY) != RESET)
        {
          if((HAL_GetTick() - tickstart) > PLL_TIMEOUT_VALUE)
          {
            return HAL_TIMEOUT;
          }
        }
      }
    }
    else
    {
      return HAL_ERROR;
    }
  }
  return HAL_OK;
}

/**
  * @brief  Initialize the CPU, AHB and APB busses clocks according to the specified
  *         parameters in the RCC_ClkInitStruct.
  * @param  RCC_ClkInitStruct  pointer to an RCC_OscInitTypeDef structure that
  *         contains the configuration information for the RCC peripheral.
  * @param  FLatency  FLASH Latency
  *          This parameter can be one of the following values:
  *            @arg FLASH_LATENCY_0   FLASH 0 Latency cycle
  *            @arg FLASH_LATENCY_1   FLASH 1 Latency cycle
  *            @arg FLASH_LATENCY_2   FLASH 2 Latency cycle
  *            @arg FLASH_LATENCY_3   FLASH 3 Latency cycle
  *            @arg FLASH_LATENCY_4   FLASH 4 Latency cycle
  *
  * @note   The SystemCoreClock CMSIS variable is used to store System Clock Frequency
  *         and updated by HAL_RCC_GetHCLKFreq() function called within this function
  *
  * @note   The MSI is used by default as system clock source after
  *         startup from Reset, wake-up from STANDBY mode. After restart from Reset,
  *         the MSI frequency is set to its default value 4 MHz.
  *
  * @note   The HSI can be selected as system clock source after
  *         from STOP modes or in case of failure of the HSE used directly or indirectly 
  *         as system clock (if the Clock Security System CSS is enabled).
  *
  * @note   A switch from one clock source to another occurs only if the target
  *         clock source is ready (clock stable after startup delay or PLL locked).
  *         If a clock source which is not yet ready is selected, the switch will
  *         occur when the clock source is ready.
  *
  * @note   You can use HAL_RCC_GetClockConfig() function to know which clock is
  *         currently used as system clock source.
  *
  * @note   Depending on the device voltage range, the software has to set correctly
  *         HPRE[3:0] bits to ensure that HCLK not exceed the maximum allowed frequency
  *         (for more details refer to section above "Initialization/de-initialization functions")
  * @retval None
  */
HAL_StatusTypeDef HAL_RCC_ClockConfig(RCC_ClkInitTypeDef  *RCC_ClkInitStruct, uint32_t FLatency)
{
  uint32_t tickstart = 0;

  /* Check the parameters */
  assert_param(RCC_ClkInitStruct != NULL);
  assert_param(IS_RCC_CLOCKTYPE(RCC_ClkInitStruct->ClockType));
  assert_param(IS_FLASH_LATENCY(FLatency));

  /* To correctly read data from FLASH memory, the number of wait states (LATENCY)
    must be correctly programmed according to the frequency of the CPU clock
    (HCLK) and the supply voltage of the device. */

  /* Increasing the number of wait states because of higher CPU frequency */
  if(FLatency > (FLASH->ACR & FLASH_ACR_LATENCY))
  {
    /* Program the new number of wait states to the LATENCY bits in the FLASH_ACR register */
    __HAL_FLASH_SET_LATENCY(FLatency);

    /* Check that the new number of wait states is taken into account to access the Flash
    memory by reading the FLASH_ACR register */
    if((FLASH->ACR & FLASH_ACR_LATENCY) != FLatency)
    {
      return HAL_ERROR;
    }
  }

  /*-------------------------- HCLK Configuration --------------------------*/
  if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_HCLK) == RCC_CLOCKTYPE_HCLK)
  {
    assert_param(IS_RCC_HCLK(RCC_ClkInitStruct->AHBCLKDivider));
    MODIFY_REG(RCC->CFGR, RCC_CFGR_HPRE, RCC_ClkInitStruct->AHBCLKDivider);
  }

  /*------------------------- SYSCLK Configuration ---------------------------*/
  if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_SYSCLK) == RCC_CLOCKTYPE_SYSCLK)
  {
    assert_param(IS_RCC_SYSCLKSOURCE(RCC_ClkInitStruct->SYSCLKSource));

    /* HSE is selected as System Clock Source */
    if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_HSE)
    {
      /* Check the HSE ready flag */
      if(READ_BIT(RCC->CR, RCC_CR_HSERDY) == RESET)
      {
        return HAL_ERROR;
      }
    }
    /* PLL is selected as System Clock Source */
    else if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_PLLCLK)
    {
      /* Check the PLL ready flag */
      if(READ_BIT(RCC->CR, RCC_CR_PLLRDY) == RESET)
      {
        return HAL_ERROR;
      }
    }
    /* MSI is selected as System Clock Source */
    else if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_MSI)
    {
      /* Check the MSI ready flag */
      if(READ_BIT(RCC->CR, RCC_CR_MSIRDY) == RESET)
      {
        return HAL_ERROR;
      }
    }
    /* HSI is selected as System Clock Source */
    else
    {
      /* Check the HSI ready flag */
      if(READ_BIT(RCC->CR, RCC_CR_HSIRDY) == RESET)
      {
        return HAL_ERROR;
      }
    }
    MODIFY_REG(RCC->CFGR, RCC_CFGR_SW, RCC_ClkInitStruct->SYSCLKSource);

    /* Get Start Tick*/
    tickstart = HAL_GetTick();

    if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_HSE)
    {
      while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_CFGR_SWS_HSE)
      {
        if((HAL_GetTick() - tickstart) > CLOCKSWITCH_TIMEOUT_VALUE)
        {
          return HAL_TIMEOUT;
        }
      }
    }
    else if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_PLLCLK)
    {
      while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_CFGR_SWS_PLL)
      {
        if((HAL_GetTick() - tickstart) > CLOCKSWITCH_TIMEOUT_VALUE)
        {
          return HAL_TIMEOUT;
        }
      }
    }
    else if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_MSI)
    {
      while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_CFGR_SWS_MSI)
      {
        if((HAL_GetTick() - tickstart) > CLOCKSWITCH_TIMEOUT_VALUE)
        {
          return HAL_TIMEOUT;
        }
      }
    }
    else
    {
      while(__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_CFGR_SWS_HSI)
      {
        if((HAL_GetTick() - tickstart) > CLOCKSWITCH_TIMEOUT_VALUE)
        {
          return HAL_TIMEOUT;
        }
      }
    }
  }
  
  /* Decreasing the number of wait states because of lower CPU frequency */
  if(FLatency < (FLASH->ACR & FLASH_ACR_LATENCY))
  {
    /* Program the new number of wait states to the LATENCY bits in the FLASH_ACR register */
    __HAL_FLASH_SET_LATENCY(FLatency);

    /* Check that the new number of wait states is taken into account to access the Flash
    memory by reading the FLASH_ACR register */
    if((FLASH->ACR & FLASH_ACR_LATENCY) != FLatency)
    {
      return HAL_ERROR;
    }
  }
  
  /*-------------------------- PCLK1 Configuration ---------------------------*/
  if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_PCLK1) == RCC_CLOCKTYPE_PCLK1)
  {
    assert_param(IS_RCC_PCLK(RCC_ClkInitStruct->APB1CLKDivider));
    MODIFY_REG(RCC->CFGR, RCC_CFGR_PPRE1, RCC_ClkInitStruct->APB1CLKDivider);
  }

  /*-------------------------- PCLK2 Configuration ---------------------------*/
  if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_PCLK2) == RCC_CLOCKTYPE_PCLK2)
  {
    assert_param(IS_RCC_PCLK(RCC_ClkInitStruct->APB2CLKDivider));
    MODIFY_REG(RCC->CFGR, RCC_CFGR_PPRE2, ((RCC_ClkInitStruct->APB2CLKDivider) << 3U));
  }

  /* Update the SystemCoreClock global variable */
  SystemCoreClock = HAL_RCC_GetSysClockFreq() >> AHBPrescTable[(RCC->CFGR & RCC_CFGR_HPRE)>> POSITION_VAL(RCC_CFGR_HPRE)];

  /* Configure the source of time base considering new system clocks settings*/
  HAL_InitTick (TICK_INT_PRIORITY);

  return HAL_OK;
}

/**
  * @}
  */

/** @defgroup RCC_Exported_Functions_Group2 Peripheral Control functions 
 *  @brief   RCC clocks control functions
 *
@verbatim
 ===============================================================================
                      ##### Peripheral Control functions #####
 ===============================================================================
    [..]
    This subsection provides a set of functions allowing to:
    
    (+) Ouput clock to MCO pin.
    (+) Retrieve current clock frequencies.
    (+) Enable the Clock Security System.

@endverbatim
  * @{
  */

/**
  * @brief  Select the clock source to output on MCO pin(PA8).
  * @note   PA8 should be configured in alternate function mode.
  * @param  RCC_MCOx  specifies the output direction for the clock source.
  *          For STM32L4xx family this parameter can have only one value:
  *            @arg @ref RCC_MCO1  Clock source to output on MCO1 pin(PA8).
  * @param  RCC_MCOSource  specifies the clock source to output.
  *          This parameter can be one of the following values:
  *            @arg @ref RCC_MCO1SOURCE_NOCLOCK  MCO output disabled, no clock on MCO
  *            @arg @ref RCC_MCO1SOURCE_SYSCLK  system  clock selected as MCO source
  *            @arg @ref RCC_MCO1SOURCE_MSI  MSI clock selected as MCO source
  *            @arg @ref RCC_MCO1SOURCE_HSI  HSI clock selected as MCO source
  *            @arg @ref RCC_MCO1SOURCE_HSE  HSE clock selected as MCO sourcee
  *            @arg @ref RCC_MCO1SOURCE_PLLCLK  main PLL clock selected as MCO source
  *            @arg @ref RCC_MCO1SOURCE_LSI  LSI clock selected as MCO source
  *            @arg @ref RCC_MCO1SOURCE_LSE  LSE clock selected as MCO source
  * @param  RCC_MCODiv  specifies the MCO prescaler.
  *          This parameter can be one of the following values:
  *            @arg @ref RCC_MCODIV_1  no division applied to MCO clock
  *            @arg @ref RCC_MCODIV_2  division by 2 applied to MCO clock
  *            @arg @ref RCC_MCODIV_4  division by 4 applied to MCO clock
  *            @arg @ref RCC_MCODIV_8  division by 8 applied to MCO clock
  *            @arg @ref RCC_MCODIV_16  division by 16 applied to MCO clock
  * @retval None
  */
void HAL_RCC_MCOConfig( uint32_t RCC_MCOx, uint32_t RCC_MCOSource, uint32_t RCC_MCODiv)
{
  GPIO_InitTypeDef GPIO_InitStruct;
  /* Check the parameters */
  assert_param(IS_RCC_MCO(RCC_MCOx));
  assert_param(IS_RCC_MCODIV(RCC_MCODiv));
  assert_param(IS_RCC_MCO1SOURCE(RCC_MCOSource));

  /* MCO Clock Enable */
  __MCO1_CLK_ENABLE();

  /* Configue the MCO1 pin in alternate function mode */
  GPIO_InitStruct.Pin = MCO1_PIN;
  GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  GPIO_InitStruct.Alternate = GPIO_AF0_MCO;
  HAL_GPIO_Init(MCO1_GPIO_PORT, &GPIO_InitStruct);

  /* Mask MCOSEL[] and MCOPRE[] bits then set MCO1 clock source and prescaler */
  MODIFY_REG(RCC->CFGR, (RCC_CFGR_MCOSEL | RCC_CFGR_MCOPRE), (RCC_MCOSource | RCC_MCODiv ));
}

/**
  * @brief  Return the SYSCLK frequency.
  *
  * @note   The system frequency computed by this function is not the real
  *         frequency in the chip. It is calculated based on the predefined
  *         constant and the selected clock source:
  * @note     If SYSCLK source is MSI, function returns values based on MSI
  *             Value as defined by the MSI range.
  * @note     If SYSCLK source is HSI, function returns values based on HSI_VALUE(*)
  * @note     If SYSCLK source is HSE, function returns values based on HSE_VALUE(**)
  * @note     If SYSCLK source is PLL, function returns values based on HSE_VALUE(**),
  *           HSI_VALUE(*) or MSI Value multiplied/divided by the PLL factors.
  * @note     (*) HSI_VALUE is a constant defined in stm32l4xx_hal_conf.h file (default value
  *               16 MHz) but the real value may vary depending on the variations
  *               in voltage and temperature.
  * @note     (**) HSE_VALUE is a constant defined in stm32l4xx_hal_conf.h file (default value
  *                8 MHz), user has to ensure that HSE_VALUE is same as the real
  *                frequency of the crystal used. Otherwise, this function may
  *                have wrong result.
  *
  * @note   The result of this function could be not correct when using fractional
  *         value for HSE crystal.
  *
  * @note   This function can be used by the user application to compute the
  *         baudrate for the communication peripherals or configure other parameters.
  *
  * @note   Each time SYSCLK changes, this function must be called to update the
  *         right SYSCLK value. Otherwise, any configuration based on this function will be incorrect.
  *
  *
  * @retval SYSCLK frequency
  */
uint32_t HAL_RCC_GetSysClockFreq(void)
{
  uint32_t msirange = 0U, pllvco = 0U, pllsource = 0U, pllr = 2U, pllm = 2U;
  uint32_t sysclockfreq = 0U;

  if((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_CFGR_SWS_MSI) ||
     ((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_CFGR_SWS_PLL) && (__HAL_RCC_GET_PLL_OSCSOURCE() == RCC_PLLSOURCE_MSI)))
  {
    /* MSI or PLL with MSI source used as system clock source */

    /* Get SYSCLK source */
    if(READ_BIT(RCC->CR, RCC_CR_MSIRGSEL) == RESET)
    { /* MSISRANGE from RCC_CSR applies */
      msirange = (RCC->CSR & RCC_CSR_MSISRANGE) >> POSITION_VAL(RCC_CSR_MSISRANGE);
    }
    else
    { /* MSIRANGE from RCC_CR applies */
      msirange = (RCC->CR & RCC_CR_MSIRANGE) >> POSITION_VAL(RCC_CR_MSIRANGE);
    }
    /*MSI frequency range in HZ*/
    msirange = MSIRangeTable[msirange];

    if(__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_CFGR_SWS_MSI)
    {
      /* MSI used as system clock source */
      sysclockfreq = msirange;
    }
  }
  else if(__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_CFGR_SWS_HSI)
  {
    /* HSI used as system clock source */
    sysclockfreq = HSI_VALUE;
  }
  else if(__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_CFGR_SWS_HSE)
  {
    /* HSE used as system clock source */
    sysclockfreq = HSE_VALUE;
  }

  if(__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_CFGR_SWS_PLL)
  {
    /* PLL used as system clock  source */

    /* PLL_VCO = (HSE_VALUE or HSI_VALUE or MSI_VALUE/ PLLM) * PLLN
    SYSCLK = PLL_VCO / PLLR
    */
    pllsource = (RCC->PLLCFGR & RCC_PLLCFGR_PLLSRC);
    pllm = ((RCC->PLLCFGR & RCC_PLLCFGR_PLLM) >> POSITION_VAL(RCC_PLLCFGR_PLLM)) + 1U ;

    switch (pllsource)
    {
    case RCC_PLLSOURCE_HSI:  /* HSI used as PLL clock source */
      pllvco = (HSI_VALUE / pllm) * ((RCC->PLLCFGR & RCC_PLLCFGR_PLLN) >> POSITION_VAL(RCC_PLLCFGR_PLLN));
      break;

    case RCC_PLLSOURCE_HSE:  /* HSE used as PLL clock source */
      pllvco = (HSE_VALUE / pllm) * ((RCC->PLLCFGR & RCC_PLLCFGR_PLLN) >> POSITION_VAL(RCC_PLLCFGR_PLLN));
      break;

    case RCC_PLLSOURCE_MSI:  /* MSI used as PLL clock source */
    default:
      pllvco = (msirange / pllm) * ((RCC->PLLCFGR & RCC_PLLCFGR_PLLN) >> POSITION_VAL(RCC_PLLCFGR_PLLN));
      break;
    }
    pllr = (((RCC->PLLCFGR & RCC_PLLCFGR_PLLR) >> POSITION_VAL(RCC_PLLCFGR_PLLR)) + 1U ) * 2U;
    sysclockfreq = pllvco/pllr;
  }

  return sysclockfreq;
}

/**
  * @brief  Return the HCLK frequency.
  * @note   Each time HCLK changes, this function must be called to update the
  *         right HCLK value. Otherwise, any configuration based on this function will be incorrect.
  *
  * @note   The SystemCoreClock CMSIS variable is used to store System Clock Frequency.
  * @retval HCLK frequency in Hz
  */
uint32_t HAL_RCC_GetHCLKFreq(void)
{
  return SystemCoreClock;
}

/**
  * @brief  Return the PCLK1 frequency.
  * @note   Each time PCLK1 changes, this function must be called to update the
  *         right PCLK1 value. Otherwise, any configuration based on this function will be incorrect.
  * @retval PCLK1 frequency in Hz
  */
uint32_t HAL_RCC_GetPCLK1Freq(void)
{
  /* Get HCLK source and Compute PCLK1 frequency ---------------------------*/
  return (HAL_RCC_GetHCLKFreq() >> APBPrescTable[(RCC->CFGR & RCC_CFGR_PPRE1)>> POSITION_VAL(RCC_CFGR_PPRE1)]);
}

/**
  * @brief  Return the PCLK2 frequency.
  * @note   Each time PCLK2 changes, this function must be called to update the
  *         right PCLK2 value. Otherwise, any configuration based on this function will be incorrect.
  * @retval PCLK2 frequency in Hz
  */
uint32_t HAL_RCC_GetPCLK2Freq(void)
{
  /* Get HCLK source and Compute PCLK2 frequency ---------------------------*/
  return (HAL_RCC_GetHCLKFreq()>> APBPrescTable[(RCC->CFGR & RCC_CFGR_PPRE2)>> POSITION_VAL(RCC_CFGR_PPRE2)]);
}

/**
  * @brief  Configure the RCC_OscInitStruct according to the internal
  *         RCC configuration registers.
  * @param  RCC_OscInitStruct  pointer to an RCC_OscInitTypeDef structure that
  *         will be configured.
  * @retval None
  */
void HAL_RCC_GetOscConfig(RCC_OscInitTypeDef  *RCC_OscInitStruct)
{
  /* Check the parameters */
  assert_param(RCC_OscInitStruct != NULL);

  /* Set all possible values for the Oscillator type parameter ---------------*/
  RCC_OscInitStruct->OscillatorType = RCC_OSCILLATORTYPE_HSE | RCC_OSCILLATORTYPE_HSI | RCC_OSCILLATORTYPE_MSI | \
                                      RCC_OSCILLATORTYPE_LSE | RCC_OSCILLATORTYPE_LSI;

  /* Get the HSE configuration -----------------------------------------------*/
  if((RCC->CR & RCC_CR_HSEBYP) == RCC_CR_HSEBYP)
  {
    RCC_OscInitStruct->HSEState = RCC_HSE_BYPASS;
  }
  else if((RCC->CR & RCC_CR_HSEON) == RCC_CR_HSEON)
  {
    RCC_OscInitStruct->HSEState = RCC_HSE_ON;
  }
  else
  {
    RCC_OscInitStruct->HSEState = RCC_HSE_OFF;
  }

   /* Get the MSI configuration -----------------------------------------------*/
  if((RCC->CR & RCC_CR_MSION) == RCC_CR_MSION)
  {
    RCC_OscInitStruct->MSIState = RCC_MSI_ON;
  }
  else
  {
    RCC_OscInitStruct->MSIState = RCC_MSI_OFF;
  }

  RCC_OscInitStruct->MSICalibrationValue = (uint32_t)((RCC->CR & RCC_ICSCR_MSITRIM) >> POSITION_VAL(RCC_ICSCR_MSITRIM));
  RCC_OscInitStruct->MSIClockRange = (uint32_t)((RCC->CR & RCC_CR_MSIRANGE) );

  /* Get the HSI configuration -----------------------------------------------*/
  if((RCC->CR & RCC_CR_HSION) == RCC_CR_HSION)
  {
    RCC_OscInitStruct->HSIState = RCC_HSI_ON;
  }
  else
  {
    RCC_OscInitStruct->HSIState = RCC_HSI_OFF;
  }

  RCC_OscInitStruct->HSICalibrationValue = (uint32_t)((RCC->ICSCR & RCC_ICSCR_HSITRIM) >> POSITION_VAL(RCC_ICSCR_HSITRIM));

  /* Get the LSE configuration -----------------------------------------------*/
  if((RCC->BDCR & RCC_BDCR_LSEBYP) == RCC_BDCR_LSEBYP)
  {
    RCC_OscInitStruct->LSEState = RCC_LSE_BYPASS;
  }
  else if((RCC->BDCR & RCC_BDCR_LSEON) == RCC_BDCR_LSEON)
  {
    RCC_OscInitStruct->LSEState = RCC_LSE_ON;
  }
  else
  {
    RCC_OscInitStruct->LSEState = RCC_LSE_OFF;
  }

  /* Get the LSI configuration -----------------------------------------------*/
  if((RCC->CSR & RCC_CSR_LSION) == RCC_CSR_LSION)
  {
    RCC_OscInitStruct->LSIState = RCC_LSI_ON;
  }
  else
  {
    RCC_OscInitStruct->LSIState = RCC_LSI_OFF;
  }

  /* Get the PLL configuration -----------------------------------------------*/
  if((RCC->CR & RCC_CR_PLLON) == RCC_CR_PLLON)
  {
    RCC_OscInitStruct->PLL.PLLState = RCC_PLL_ON;
  }
  else
  {
    RCC_OscInitStruct->PLL.PLLState = RCC_PLL_OFF;
  }
  RCC_OscInitStruct->PLL.PLLSource = (uint32_t)(RCC->PLLCFGR & RCC_PLLCFGR_PLLSRC);
  RCC_OscInitStruct->PLL.PLLM = (uint32_t)(((RCC->PLLCFGR & RCC_PLLCFGR_PLLM) >> POSITION_VAL(RCC_PLLCFGR_PLLM)) + 1U);
  RCC_OscInitStruct->PLL.PLLN = (uint32_t)((RCC->PLLCFGR & RCC_PLLCFGR_PLLN) >> POSITION_VAL(RCC_PLLCFGR_PLLN));
  RCC_OscInitStruct->PLL.PLLQ = (uint32_t)((((RCC->PLLCFGR & RCC_PLLCFGR_PLLQ) >> POSITION_VAL(RCC_PLLCFGR_PLLQ)) + 1U) << 1U);
  RCC_OscInitStruct->PLL.PLLR = (uint32_t)((((RCC->PLLCFGR & RCC_PLLCFGR_PLLR) >> POSITION_VAL(RCC_PLLCFGR_PLLR)) + 1U) << 1U);
  if((RCC->PLLCFGR & RCC_PLLCFGR_PLLP) != RESET)
  {
    RCC_OscInitStruct->PLL.PLLP = RCC_PLLP_DIV17;
  }
  else
  {
    RCC_OscInitStruct->PLL.PLLP = RCC_PLLP_DIV7;
  }
}

/**
  * @brief  Configure the RCC_ClkInitStruct according to the internal
  *         RCC configuration registers.
  * @param  RCC_ClkInitStruct  pointer to an RCC_ClkInitTypeDef structure that
  *         will be configured.
  * @param  pFLatency  Pointer on the Flash Latency.
  * @retval None
  */
void HAL_RCC_GetClockConfig(RCC_ClkInitTypeDef  *RCC_ClkInitStruct, uint32_t *pFLatency)
{
  /* Check the parameters */
  assert_param(RCC_ClkInitStruct != NULL);
  assert_param(pFLatency != NULL);

  /* Set all possible values for the Clock type parameter --------------------*/
  RCC_ClkInitStruct->ClockType = RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2;

  /* Get the SYSCLK configuration --------------------------------------------*/
  RCC_ClkInitStruct->SYSCLKSource = (uint32_t)(RCC->CFGR & RCC_CFGR_SW);

  /* Get the HCLK configuration ----------------------------------------------*/
  RCC_ClkInitStruct->AHBCLKDivider = (uint32_t)(RCC->CFGR & RCC_CFGR_HPRE);

  /* Get the APB1 configuration ----------------------------------------------*/
  RCC_ClkInitStruct->APB1CLKDivider = (uint32_t)(RCC->CFGR & RCC_CFGR_PPRE1);

  /* Get the APB2 configuration ----------------------------------------------*/
  RCC_ClkInitStruct->APB2CLKDivider = (uint32_t)((RCC->CFGR & RCC_CFGR_PPRE2) >> 3U);

  /* Get the Flash Wait State (Latency) configuration ------------------------*/
  *pFLatency = (uint32_t)(FLASH->ACR & FLASH_ACR_LATENCY);
}

/**
  * @brief  Enable the Clock Security System.
  * @note   If a failure is detected on the HSE oscillator clock, this oscillator
  *         is automatically disabled and an interrupt is generated to inform the
  *         software about the failure (Clock Security System Interrupt, CSSI),
  *         allowing the MCU to perform rescue operations. The CSSI is linked to
  *         the Cortex-M4 NMI (Non-Maskable Interrupt) exception vector.
  * @note   The Clock Security System can only be cleared by reset.
  * @retval None
  */
void HAL_RCC_EnableCSS(void)
{
  SET_BIT(RCC->CR, RCC_CR_CSSON) ;
}

/**
  * @brief Handle the RCC Clock Security System interrupt request.
  * @note This API should be called under the NMI_Handler().
  * @retval None
  */
void HAL_RCC_NMI_IRQHandler(void)
{
  /* Check RCC CSSF interrupt flag  */
  if(__HAL_RCC_GET_IT(RCC_IT_CSS))
  {
    /* RCC Clock Security System interrupt user callback */
    HAL_RCC_CSSCallback();

    /* Clear RCC CSS pending bit */
    __HAL_RCC_CLEAR_IT(RCC_IT_CSS);
  }
}

/**
  * @brief  RCC Clock Security System interrupt callback.
  * @retval none
  */
__weak void HAL_RCC_CSSCallback(void)
{
  /* NOTE : This function should not be modified, when the callback is needed,
            the HAL_RCC_CSSCallback should be implemented in the user file
   */
}

/**
  * @}
  */

/**
  * @}
  */

/* Private function prototypes -----------------------------------------------*/
/** @addtogroup RCC_Private_Functions
  * @{
  */
/**
  * @brief  Update number of Flash wait states in line with MSI range and current 
            voltage range.
  * @param  msirange  MSI range value from RCC_MSIRANGE_0 to RCC_MSIRANGE_11
  * @retval HAL status
  */
static HAL_StatusTypeDef RCC_SetFlashLatencyFromMSIRange(uint32_t msirange)
{
  uint32_t vos = 0;
  uint32_t latency = FLASH_LATENCY_0;  /* default value 0WS */
  
  if(__HAL_RCC_PWR_IS_CLK_ENABLED())
  {
    vos = HAL_PWREx_GetVoltageRange();
  }
  else
  {
    __HAL_RCC_PWR_CLK_ENABLE();
    vos = HAL_PWREx_GetVoltageRange();
    __HAL_RCC_PWR_CLK_DISABLE();
  }
  
  if(vos == PWR_REGULATOR_VOLTAGE_SCALE1)
  {
    if(msirange > RCC_MSIRANGE_8)
    {
      /* MSI > 16Mhz */
      if(msirange > RCC_MSIRANGE_10)
      {
        /* MSI 48Mhz */
        latency = FLASH_LATENCY_2; /* 2WS */
      }
      else
      {
        /* MSI 24Mhz or 32Mhz */
        latency = FLASH_LATENCY_1; /* 1WS */
      }
    }
    /* else MSI <= 16Mhz default FLASH_LATENCY_0 0WS */
  }
  else
  {
    if(msirange > RCC_MSIRANGE_8)
    {
      /* MSI > 16Mhz */
      latency = FLASH_LATENCY_3; /* 3WS */
    }
    else
    {
      if(msirange == RCC_MSIRANGE_8)
      {
        /* MSI 16Mhz */
        latency = FLASH_LATENCY_2; /* 2WS */
      }
      else if(msirange == RCC_MSIRANGE_7) 
      {
        /* MSI 8Mhz */
        latency = FLASH_LATENCY_1; /* 1WS */
      }
      /* else MSI < 8Mhz default FLASH_LATENCY_0 0WS */
    }
  }
       
  __HAL_FLASH_SET_LATENCY(latency);
  
  /* Check that the new number of wait states is taken into account to access the Flash
     memory by reading the FLASH_ACR register */
  if((FLASH->ACR & FLASH_ACR_LATENCY) != latency)
  {
    return HAL_ERROR;
  }
  
  return HAL_OK;
}

/**
  * @}
  */

#endif /* HAL_RCC_MODULE_ENABLED */
/**
  * @}
  */

/**
  * @}
  */

/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/