CircuitPython

Source code browser

Note: This site will be taken down by the end of the year

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
/*
 * This file is part of the MicroPython project, http://micropython.org/
 *
 * The MIT License (MIT)
 *
 * Copyright (c) 2013, 2014 Damien P. George
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

#include <string.h>

#include "py/nlr.h"
#include "py/runtime.h"
#include "py/mphal.h"
#include "lib/oofatfs/ff.h"
#include "extmod/vfs_fat.h"

#include "sdcard.h"
#include "pin.h"
#include "genhdr/pins.h"
#include "bufhelper.h"
#include "dma.h"
#include "irq.h"

#if MICROPY_HW_HAS_SDCARD

#if defined(MCU_SERIES_F7) || defined(MCU_SERIES_L4)

// The F7 has 2 SDMMC units but at the moment we only support using one of them in
// a given build.  If a boards config file defines MICROPY_HW_SDMMC2_CK then SDMMC2
// is used, otherwise SDMMC1 is used.

#if defined(MICROPY_HW_SDMMC2_CK)
#define SDIO SDMMC2
#define SDMMC_CLK_ENABLE() __HAL_RCC_SDMMC2_CLK_ENABLE()
#define SDMMC_CLK_DISABLE() __HAL_RCC_SDMMC2_CLK_DISABLE()
#define SDMMC_IRQn SDMMC2_IRQn
#define SDMMC_TX_DMA dma_SDMMC_2_TX
#define SDMMC_RX_DMA dma_SDMMC_2_RX
#else
#define SDIO SDMMC1
#define SDMMC_CLK_ENABLE() __HAL_RCC_SDMMC1_CLK_ENABLE()
#define SDMMC_CLK_DISABLE() __HAL_RCC_SDMMC1_CLK_DISABLE()
#define SDMMC_IRQn SDMMC1_IRQn
#define SDMMC_TX_DMA dma_SDIO_0_TX
#define SDMMC_RX_DMA dma_SDIO_0_RX
#endif

// The F7 & L4 series calls the peripheral SDMMC rather than SDIO, so provide some
// #defines for backwards compatability.

#define SDIO_CLOCK_EDGE_RISING              SDMMC_CLOCK_EDGE_RISING
#define SDIO_CLOCK_EDGE_FALLING             SDMMC_CLOCK_EDGE_FALLING

#define SDIO_CLOCK_BYPASS_DISABLE           SDMMC_CLOCK_BYPASS_DISABLE
#define SDIO_CLOCK_BYPASS_ENABLE            SDMMC_CLOCK_BYPASS_ENABLE

#define SDIO_CLOCK_POWER_SAVE_DISABLE       SDMMC_CLOCK_POWER_SAVE_DISABLE
#define SDIO_CLOCK_POWER_SAVE_ENABLE        SDMMC_CLOCK_POWER_SAVE_ENABLE

#define SDIO_BUS_WIDE_1B                    SDMMC_BUS_WIDE_1B
#define SDIO_BUS_WIDE_4B                    SDMMC_BUS_WIDE_4B
#define SDIO_BUS_WIDE_8B                    SDMMC_BUS_WIDE_8B

#define SDIO_HARDWARE_FLOW_CONTROL_DISABLE  SDMMC_HARDWARE_FLOW_CONTROL_DISABLE
#define SDIO_HARDWARE_FLOW_CONTROL_ENABLE   SDMMC_HARDWARE_FLOW_CONTROL_ENABLE

#define SDIO_TRANSFER_CLK_DIV               SDMMC_TRANSFER_CLK_DIV

#else

// These are definitions for F4 MCUs so there is a common macro across all MCUs.

#define SDMMC_CLK_ENABLE() __SDIO_CLK_ENABLE()
#define SDMMC_CLK_DISABLE() __SDIO_CLK_DISABLE()
#define SDMMC_IRQn SDIO_IRQn
#define SDMMC_TX_DMA dma_SDIO_0_TX
#define SDMMC_RX_DMA dma_SDIO_0_RX

#endif

// If no custom SDIO pins defined, use the default ones
#ifndef MICROPY_HW_SDMMC_CK

#define MICROPY_HW_SDMMC_D0 (pin_C8)
#define MICROPY_HW_SDMMC_D1 (pin_C9)
#define MICROPY_HW_SDMMC_D2 (pin_C10)
#define MICROPY_HW_SDMMC_D3 (pin_C11)
#define MICROPY_HW_SDMMC_CK (pin_C12)
#define MICROPY_HW_SDMMC_CMD (pin_D2)

#endif

// TODO: Since SDIO is fundamentally half-duplex, we really only need to
//       tie up one DMA channel. However, the HAL DMA API doesn't
// seem to provide a convenient way to change the direction. I believe that
// its as simple as changing the CR register and the Init.Direction field
// and make DMA_SetConfig public.

// TODO: I think that as an optimization, we can allocate these dynamically
//       if an sd card is detected. This will save approx 260 bytes of RAM
//       when no sdcard was being used.
static SD_HandleTypeDef sd_handle;
static DMA_HandleTypeDef sd_rx_dma, sd_tx_dma;

void sdcard_init(void) {
    // invalidate the sd_handle
    sd_handle.Instance = NULL;

    // configure SD GPIO
    // we do this here an not in HAL_SD_MspInit because it apparently
    // makes it more robust to have the pins always pulled high
    // Note: the mp_hal_pin_config function will configure the GPIO in
    // fast mode which can do up to 50MHz.  This should be plenty for SDIO
    // which clocks up to 25MHz maximum.
    #if defined(MICROPY_HW_SDMMC2_CK)
    // Use SDMMC2 peripheral with pins provided by the board's config
    mp_hal_pin_config_alt(&MICROPY_HW_SDMMC2_CK, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_UP, AF_FN_SDMMC, 2);
    mp_hal_pin_config_alt(&MICROPY_HW_SDMMC2_CMD, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_UP, AF_FN_SDMMC, 2);
    mp_hal_pin_config_alt(&MICROPY_HW_SDMMC2_D0, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_UP, AF_FN_SDMMC, 2);
    mp_hal_pin_config_alt(&MICROPY_HW_SDMMC2_D1, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_UP, AF_FN_SDMMC, 2);
    mp_hal_pin_config_alt(&MICROPY_HW_SDMMC2_D2, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_UP, AF_FN_SDMMC, 2);
    mp_hal_pin_config_alt(&MICROPY_HW_SDMMC2_D3, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_UP, AF_FN_SDMMC, 2);
    #else
    // Default SDIO/SDMMC1 config
    mp_hal_pin_config(&MICROPY_HW_SDMMC_D0, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_UP, GPIO_AF12_SDIO);
    mp_hal_pin_config(&MICROPY_HW_SDMMC_D1, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_UP, GPIO_AF12_SDIO);
    mp_hal_pin_config(&MICROPY_HW_SDMMC_D2, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_UP, GPIO_AF12_SDIO);
    mp_hal_pin_config(&MICROPY_HW_SDMMC_D3, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_UP, GPIO_AF12_SDIO);
    mp_hal_pin_config(&MICROPY_HW_SDMMC_CK, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_UP, GPIO_AF12_SDIO);
    mp_hal_pin_config(&MICROPY_HW_SDMMC_CMD, MP_HAL_PIN_MODE_ALT, MP_HAL_PIN_PULL_UP, GPIO_AF12_SDIO);
    #endif

    // configure the SD card detect pin
    // we do this here so we can detect if the SD card is inserted before powering it on
    mp_hal_pin_config(&MICROPY_HW_SDCARD_DETECT_PIN, MP_HAL_PIN_MODE_INPUT, MICROPY_HW_SDCARD_DETECT_PULL, 0);
}

void HAL_SD_MspInit(SD_HandleTypeDef *hsd) {
    // enable SDIO clock
    SDMMC_CLK_ENABLE();

    // NVIC configuration for SDIO interrupts
    HAL_NVIC_SetPriority(SDMMC_IRQn, IRQ_PRI_SDIO, IRQ_SUBPRI_SDIO);
    HAL_NVIC_EnableIRQ(SDMMC_IRQn);

    // GPIO have already been initialised by sdcard_init
}

void HAL_SD_MspDeInit(SD_HandleTypeDef *hsd) {
    HAL_NVIC_DisableIRQ(SDMMC_IRQn);
    SDMMC_CLK_DISABLE();
}

bool sdcard_is_present(void) {
    return HAL_GPIO_ReadPin(MICROPY_HW_SDCARD_DETECT_PIN.gpio, MICROPY_HW_SDCARD_DETECT_PIN.pin_mask) == MICROPY_HW_SDCARD_DETECT_PRESENT;
}

bool sdcard_power_on(void) {
    if (!sdcard_is_present()) {
        return false;
    }
    if (sd_handle.Instance) {
        return true;
    }

    // SD device interface configuration
    sd_handle.Instance = SDIO;
    sd_handle.Init.ClockEdge           = SDIO_CLOCK_EDGE_RISING;
    sd_handle.Init.ClockBypass         = SDIO_CLOCK_BYPASS_DISABLE;
    sd_handle.Init.ClockPowerSave      = SDIO_CLOCK_POWER_SAVE_ENABLE;
    sd_handle.Init.BusWide             = SDIO_BUS_WIDE_1B;
    sd_handle.Init.HardwareFlowControl = SDIO_HARDWARE_FLOW_CONTROL_DISABLE;
    sd_handle.Init.ClockDiv            = SDIO_TRANSFER_CLK_DIV;

    // init the SD interface, with retry if it's not ready yet
    HAL_SD_CardInfoTypedef cardinfo;
    for (int retry = 10; HAL_SD_Init(&sd_handle, &cardinfo) != SD_OK; retry--) {
        if (retry == 0) {
            goto error;
        }
        mp_hal_delay_ms(50);
    }

    // configure the SD bus width for wide operation
    if (HAL_SD_WideBusOperation_Config(&sd_handle, SDIO_BUS_WIDE_4B) != SD_OK) {
        HAL_SD_DeInit(&sd_handle);
        goto error;
    }

    return true;

error:
    sd_handle.Instance = NULL;
    return false;
}

void sdcard_power_off(void) {
    if (!sd_handle.Instance) {
        return;
    }
    HAL_SD_DeInit(&sd_handle);
    sd_handle.Instance = NULL;
}

uint64_t sdcard_get_capacity_in_bytes(void) {
    if (sd_handle.Instance == NULL) {
        return 0;
    }
    HAL_SD_CardInfoTypedef cardinfo;
    HAL_SD_Get_CardInfo(&sd_handle, &cardinfo);
    return cardinfo.CardCapacity;
}

void SDIO_IRQHandler(void) {
    IRQ_ENTER(SDIO_IRQn);
    HAL_SD_IRQHandler(&sd_handle);
    IRQ_EXIT(SDIO_IRQn);
}

#if defined(MCU_SERIES_F7)
void SDMMC2_IRQHandler(void) {
    IRQ_ENTER(SDMMC2_IRQn);
    HAL_SD_IRQHandler(&sd_handle);
    IRQ_EXIT(SDMMC2_IRQn);
}
#endif

mp_uint_t sdcard_read_blocks(uint8_t *dest, uint32_t block_num, uint32_t num_blocks) {
    // check that SD card is initialised
    if (sd_handle.Instance == NULL) {
        return SD_ERROR;
    }

    HAL_SD_ErrorTypedef err = SD_OK;

    // check that dest pointer is aligned on a 4-byte boundary
    uint8_t *orig_dest = NULL;
    uint32_t saved_word;
    if (((uint32_t)dest & 3) != 0) {
        // Pointer is not aligned so it needs fixing.
        // We could allocate a temporary block of RAM (as sdcard_write_blocks
        // does) but instead we are going to use the dest buffer inplace.  We
        // are going to align the pointer, save the initial word at the aligned
        // location, read into the aligned memory, move the memory back to the
        // unaligned location, then restore the initial bytes at the aligned
        // location.  We should have no trouble doing this as those initial
        // bytes at the aligned location should be able to be changed for the
        // duration of this function call.
        orig_dest = dest;
        dest = (uint8_t*)((uint32_t)dest & ~3);
        saved_word = *(uint32_t*)dest;
    }

    if (query_irq() == IRQ_STATE_ENABLED) {
        // we must disable USB irqs to prevent MSC contention with SD card
        uint32_t basepri = raise_irq_pri(IRQ_PRI_OTG_FS);

        dma_init(&sd_rx_dma, &SDMMC_RX_DMA, &sd_handle);
        sd_handle.hdmarx = &sd_rx_dma;

        // make sure cache is flushed and invalidated so when DMA updates the RAM
        // from reading the peripheral the CPU then reads the new data
        MP_HAL_CLEANINVALIDATE_DCACHE(dest, num_blocks * SDCARD_BLOCK_SIZE);

        err = HAL_SD_ReadBlocks_BlockNumber_DMA(&sd_handle, (uint32_t*)dest, block_num, SDCARD_BLOCK_SIZE, num_blocks);
        if (err == SD_OK) {
            // wait for DMA transfer to finish, with a large timeout
            err = HAL_SD_CheckReadOperation(&sd_handle, 100000000);
        }

        dma_deinit(&SDMMC_RX_DMA);
        sd_handle.hdmarx = NULL;

        restore_irq_pri(basepri);
    } else {
        err = HAL_SD_ReadBlocks_BlockNumber(&sd_handle, (uint32_t*)dest, block_num, SDCARD_BLOCK_SIZE, num_blocks);
    }

    if (orig_dest != NULL) {
        // move the read data to the non-aligned position, and restore the initial bytes
        memmove(orig_dest, dest, num_blocks * SDCARD_BLOCK_SIZE);
        memcpy(dest, &saved_word, orig_dest - dest);
    }

    return err;
}

mp_uint_t sdcard_write_blocks(const uint8_t *src, uint32_t block_num, uint32_t num_blocks) {
    // check that SD card is initialised
    if (sd_handle.Instance == NULL) {
        return SD_ERROR;
    }

    HAL_SD_ErrorTypedef err = SD_OK;

    // check that src pointer is aligned on a 4-byte boundary
    if (((uint32_t)src & 3) != 0) {
        // pointer is not aligned, so allocate a temporary block to do the write
        uint8_t *src_aligned = m_new_maybe(uint8_t, SDCARD_BLOCK_SIZE);
        if (src_aligned == NULL) {
            return SD_ERROR;
        }
        for (size_t i = 0; i < num_blocks; ++i) {
            memcpy(src_aligned, src + i * SDCARD_BLOCK_SIZE, SDCARD_BLOCK_SIZE);
            err = sdcard_write_blocks(src_aligned, block_num + i, 1);
            if (err != SD_OK) {
                break;
            }
        }
        m_del(uint8_t, src_aligned, SDCARD_BLOCK_SIZE);
        return err;
    }

    if (query_irq() == IRQ_STATE_ENABLED) {
        // we must disable USB irqs to prevent MSC contention with SD card
        uint32_t basepri = raise_irq_pri(IRQ_PRI_OTG_FS);

        dma_init(&sd_tx_dma, &SDMMC_TX_DMA, &sd_handle);
        sd_handle.hdmatx = &sd_tx_dma;

        // make sure cache is flushed to RAM so the DMA can read the correct data
        MP_HAL_CLEAN_DCACHE(src, num_blocks * SDCARD_BLOCK_SIZE);

        err = HAL_SD_WriteBlocks_BlockNumber_DMA(&sd_handle, (uint32_t*)src, block_num, SDCARD_BLOCK_SIZE, num_blocks);
        if (err == SD_OK) {
            // wait for DMA transfer to finish, with a large timeout
            err = HAL_SD_CheckWriteOperation(&sd_handle, 100000000);
        }
        dma_deinit(&SDMMC_TX_DMA);
        sd_handle.hdmatx = NULL;

        restore_irq_pri(basepri);
    } else {
        err = HAL_SD_WriteBlocks_BlockNumber(&sd_handle, (uint32_t*)src, block_num, SDCARD_BLOCK_SIZE, num_blocks);
    }

    return err;
}

/******************************************************************************/
// MicroPython bindings
//
// Expose the SD card as an object with the block protocol.

// there is a singleton SDCard object
const mp_obj_base_t pyb_sdcard_obj = {&pyb_sdcard_type};

STATIC mp_obj_t pyb_sdcard_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
    // check arguments
    mp_arg_check_num(n_args, n_kw, 0, 0, false);

    // return singleton object
    return (mp_obj_t)&pyb_sdcard_obj;
}

STATIC mp_obj_t sd_present(mp_obj_t self) {
    return mp_obj_new_bool(sdcard_is_present());
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(sd_present_obj, sd_present);

STATIC mp_obj_t sd_power(mp_obj_t self, mp_obj_t state) {
    bool result;
    if (mp_obj_is_true(state)) {
        result = sdcard_power_on();
    } else {
        sdcard_power_off();
        result = true;
    }
    return mp_obj_new_bool(result);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(sd_power_obj, sd_power);

STATIC mp_obj_t sd_info(mp_obj_t self) {
    if (sd_handle.Instance == NULL) {
        return mp_const_none;
    }
    HAL_SD_CardInfoTypedef cardinfo;
    HAL_SD_Get_CardInfo(&sd_handle, &cardinfo);
    // cardinfo.SD_csd and cardinfo.SD_cid have lots of info but we don't use them
    mp_obj_t tuple[3] = {
        mp_obj_new_int_from_ull(cardinfo.CardCapacity),
        mp_obj_new_int_from_uint(cardinfo.CardBlockSize),
        mp_obj_new_int(cardinfo.CardType),
    };
    return mp_obj_new_tuple(3, tuple);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(sd_info_obj, sd_info);

// now obsolete, kept for backwards compatibility
STATIC mp_obj_t sd_read(mp_obj_t self, mp_obj_t block_num) {
    uint8_t *dest = m_new(uint8_t, SDCARD_BLOCK_SIZE);
    mp_uint_t ret = sdcard_read_blocks(dest, mp_obj_get_int(block_num), 1);

    if (ret != 0) {
        m_del(uint8_t, dest, SDCARD_BLOCK_SIZE);
        nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_Exception, "sdcard_read_blocks failed [%u]", ret));
    }

    return mp_obj_new_bytearray_by_ref(SDCARD_BLOCK_SIZE, dest);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(sd_read_obj, sd_read);

// now obsolete, kept for backwards compatibility
STATIC mp_obj_t sd_write(mp_obj_t self, mp_obj_t block_num, mp_obj_t data) {
    mp_buffer_info_t bufinfo;
    mp_get_buffer_raise(data, &bufinfo, MP_BUFFER_READ);
    if (bufinfo.len % SDCARD_BLOCK_SIZE != 0) {
        nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "writes must be a multiple of %d bytes", SDCARD_BLOCK_SIZE));
    }

    mp_uint_t ret = sdcard_write_blocks(bufinfo.buf, mp_obj_get_int(block_num), bufinfo.len / SDCARD_BLOCK_SIZE);

    if (ret != 0) {
        nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_Exception, "sdcard_write_blocks failed [%u]", ret));
    }

    return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_3(sd_write_obj, sd_write);

STATIC mp_obj_t pyb_sdcard_readblocks(mp_obj_t self, mp_obj_t block_num, mp_obj_t buf) {
    mp_buffer_info_t bufinfo;
    mp_get_buffer_raise(buf, &bufinfo, MP_BUFFER_WRITE);
    mp_uint_t ret = sdcard_read_blocks(bufinfo.buf, mp_obj_get_int(block_num), bufinfo.len / SDCARD_BLOCK_SIZE);
    return mp_obj_new_bool(ret == 0);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_3(pyb_sdcard_readblocks_obj, pyb_sdcard_readblocks);

STATIC mp_obj_t pyb_sdcard_writeblocks(mp_obj_t self, mp_obj_t block_num, mp_obj_t buf) {
    mp_buffer_info_t bufinfo;
    mp_get_buffer_raise(buf, &bufinfo, MP_BUFFER_READ);
    mp_uint_t ret = sdcard_write_blocks(bufinfo.buf, mp_obj_get_int(block_num), bufinfo.len / SDCARD_BLOCK_SIZE);
    return mp_obj_new_bool(ret == 0);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_3(pyb_sdcard_writeblocks_obj, pyb_sdcard_writeblocks);

STATIC mp_obj_t pyb_sdcard_ioctl(mp_obj_t self, mp_obj_t cmd_in, mp_obj_t arg_in) {
    mp_int_t cmd = mp_obj_get_int(cmd_in);
    switch (cmd) {
        case BP_IOCTL_INIT:
            if (!sdcard_power_on()) {
                return MP_OBJ_NEW_SMALL_INT(-1); // error
            }
            return MP_OBJ_NEW_SMALL_INT(0); // success

        case BP_IOCTL_DEINIT:
            sdcard_power_off();
            return MP_OBJ_NEW_SMALL_INT(0); // success

        case BP_IOCTL_SYNC:
            // nothing to do
            return MP_OBJ_NEW_SMALL_INT(0); // success

        case BP_IOCTL_SEC_COUNT:
            return MP_OBJ_NEW_SMALL_INT(0); // TODO

        case BP_IOCTL_SEC_SIZE:
            return MP_OBJ_NEW_SMALL_INT(SDCARD_BLOCK_SIZE);

        default: // unknown command
            return MP_OBJ_NEW_SMALL_INT(-1); // error
    }
}
STATIC MP_DEFINE_CONST_FUN_OBJ_3(pyb_sdcard_ioctl_obj, pyb_sdcard_ioctl);

STATIC const mp_rom_map_elem_t pyb_sdcard_locals_dict_table[] = {
    { MP_ROM_QSTR(MP_QSTR_present), MP_ROM_PTR(&sd_present_obj) },
    { MP_ROM_QSTR(MP_QSTR_power), MP_ROM_PTR(&sd_power_obj) },
    { MP_ROM_QSTR(MP_QSTR_info), MP_ROM_PTR(&sd_info_obj) },
    { MP_ROM_QSTR(MP_QSTR_read), MP_ROM_PTR(&sd_read_obj) },
    { MP_ROM_QSTR(MP_QSTR_write), MP_ROM_PTR(&sd_write_obj) },
    // block device protocol
    { MP_ROM_QSTR(MP_QSTR_readblocks), MP_ROM_PTR(&pyb_sdcard_readblocks_obj) },
    { MP_ROM_QSTR(MP_QSTR_writeblocks), MP_ROM_PTR(&pyb_sdcard_writeblocks_obj) },
    { MP_ROM_QSTR(MP_QSTR_ioctl), MP_ROM_PTR(&pyb_sdcard_ioctl_obj) },
};

STATIC MP_DEFINE_CONST_DICT(pyb_sdcard_locals_dict, pyb_sdcard_locals_dict_table);

const mp_obj_type_t pyb_sdcard_type = {
    { &mp_type_type },
    .name = MP_QSTR_SDCard,
    .make_new = pyb_sdcard_make_new,
    .locals_dict = (mp_obj_dict_t*)&pyb_sdcard_locals_dict,
};

void sdcard_init_vfs(fs_user_mount_t *vfs, int part) {
    vfs->base.type = &mp_fat_vfs_type;
    vfs->flags |= FSUSER_NATIVE | FSUSER_HAVE_IOCTL;
    vfs->fatfs.drv = vfs;
    vfs->fatfs.part = part;
    vfs->readblocks[0] = (mp_obj_t)&pyb_sdcard_readblocks_obj;
    vfs->readblocks[1] = (mp_obj_t)&pyb_sdcard_obj;
    vfs->readblocks[2] = (mp_obj_t)sdcard_read_blocks; // native version
    vfs->writeblocks[0] = (mp_obj_t)&pyb_sdcard_writeblocks_obj;
    vfs->writeblocks[1] = (mp_obj_t)&pyb_sdcard_obj;
    vfs->writeblocks[2] = (mp_obj_t)sdcard_write_blocks; // native version
    vfs->u.ioctl[0] = (mp_obj_t)&pyb_sdcard_ioctl_obj;
    vfs->u.ioctl[1] = (mp_obj_t)&pyb_sdcard_obj;
}

#endif // MICROPY_HW_HAS_SDCARD