CircuitPython

Source code browser

Note: This site will be taken down by the end of the year

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
/*
 * This file is part of the MicroPython project, http://micropython.org/
 *
 * The MIT License (MIT)
 *
 * Copyright (c) 2013, 2014 Damien P. George
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

#include <stdio.h>
#include <string.h>

#include "py/nlr.h"
#include "py/runtime.h"
#include "bufhelper.h"
#include "uart.h"

/// \moduleref pyb
/// \class UART - duplex serial communication bus
///
/// UART implements the standard UART/USART duplex serial communications protocol.  At
/// the physical level it consists of 2 lines: RX and TX.
///
/// See usage model of I2C.  UART is very similar.  Main difference is
/// parameters to init the UART bus:
///
///     from pyb import UART
///
///     uart = UART(1, 9600)                         # init with given baudrate
///     uart.init(9600, bits=8, stop=1, parity=None) # init with given parameters
///
/// Bits can be 8 or 9, stop can be 1 or 2, parity can be None, 0 (even), 1 (odd).
///
/// Extra method:
///
///     uart.any()               # returns True if any characters waiting

struct _pyb_uart_obj_t {
    mp_obj_base_t base;
    pyb_uart_t uart_id;
    bool is_enabled;
//    UART_HandleTypeDef uart;
};

pyb_uart_obj_t *pyb_uart_global_debug = NULL;

// assumes Init parameters have been set up correctly
bool uart_init2(pyb_uart_obj_t *uart_obj) {
#if 0
    USART_TypeDef *UARTx = NULL;

    uint32_t GPIO_Pin = 0;
    uint8_t  GPIO_AF_UARTx = 0;
    GPIO_TypeDef* GPIO_Port = NULL;

    switch (uart_obj->uart_id) {
        // USART1 is on PA9/PA10 (CK on PA8), PB6/PB7
        case PYB_UART_1:
            UARTx = USART1;
            GPIO_AF_UARTx = GPIO_AF7_USART1;

#if defined (PYBV4) || defined(PYBV10)
            GPIO_Port = GPIOB;
            GPIO_Pin = GPIO_PIN_6 | GPIO_PIN_7;
#else
            GPIO_Port = GPIOA;
            GPIO_Pin = GPIO_PIN_9 | GPIO_PIN_10;
#endif

            __USART1_CLK_ENABLE();
            break;

        // USART2 is on PA2/PA3 (CK on PA4), PD5/PD6 (CK on PD7)
        case PYB_UART_2:
            UARTx = USART2;
            GPIO_AF_UARTx = GPIO_AF7_USART2;

            GPIO_Port = GPIOA;
            GPIO_Pin = GPIO_PIN_2 | GPIO_PIN_3;

            __USART2_CLK_ENABLE();
            break;

        // USART3 is on PB10/PB11 (CK on PB12), PC10/PC11 (CK on PC12), PD8/PD9 (CK on PD10)
        case PYB_UART_3:
            UARTx = USART3;
            GPIO_AF_UARTx = GPIO_AF7_USART3;

#if defined(PYBV3) || defined(PYBV4) | defined(PYBV10)
            GPIO_Port = GPIOB;
            GPIO_Pin = GPIO_PIN_10 | GPIO_PIN_11;
#else
            GPIO_Port = GPIOD;
            GPIO_Pin = GPIO_PIN_8 | GPIO_PIN_9;
#endif
            __USART3_CLK_ENABLE();
            break;

        // UART4 is on PA0/PA1, PC10/PC11
        case PYB_UART_4:
            UARTx = UART4;
            GPIO_AF_UARTx = GPIO_AF8_UART4;

            GPIO_Port = GPIOA;
            GPIO_Pin = GPIO_PIN_0 | GPIO_PIN_1;

            __UART4_CLK_ENABLE();
            break;

        // USART6 is on PC6/PC7 (CK on PC8)
        case PYB_UART_6:
            UARTx = USART6;
            GPIO_AF_UARTx = GPIO_AF8_USART6;

            GPIO_Port = GPIOC;
            GPIO_Pin = GPIO_PIN_6 | GPIO_PIN_7;

            __USART6_CLK_ENABLE();
            break;

        default:
            return false;
    }

    // init GPIO
    GPIO_InitTypeDef GPIO_InitStructure;
    GPIO_InitStructure.Pin = GPIO_Pin;
    GPIO_InitStructure.Speed = GPIO_SPEED_HIGH;
    GPIO_InitStructure.Mode = GPIO_MODE_AF_PP;
    GPIO_InitStructure.Pull = GPIO_PULLUP;
    GPIO_InitStructure.Alternate = GPIO_AF_UARTx;
    HAL_GPIO_Init(GPIO_Port, &GPIO_InitStructure);

    // init UARTx
    uart_obj->uart.Instance = UARTx;
    HAL_UART_Init(&uart_obj->uart);

    uart_obj->is_enabled = true;
#endif
    return true;
}

bool uart_init(pyb_uart_obj_t *uart_obj, uint32_t baudrate) {
#if 0
    UART_HandleTypeDef *uh = &uart_obj->uart;
    memset(uh, 0, sizeof(*uh));
    uh->Init.BaudRate = baudrate;
    uh->Init.WordLength = UART_WORDLENGTH_8B;
    uh->Init.StopBits = UART_STOPBITS_1;
    uh->Init.Parity = UART_PARITY_NONE;
    uh->Init.Mode = UART_MODE_TX_RX;
    uh->Init.HwFlowCtl = UART_HWCONTROL_NONE;
    uh->Init.OverSampling = UART_OVERSAMPLING_16;
#endif
    return uart_init2(uart_obj);
}

mp_uint_t uart_rx_any(pyb_uart_obj_t *uart_obj) {
#if 0
    return __HAL_UART_GET_FLAG(&uart_obj->uart, UART_FLAG_RXNE);
#else
    return 0;
#endif
}

int uart_rx_char(pyb_uart_obj_t *uart_obj) {
    uint8_t ch;
#if 0
    if (HAL_UART_Receive(&uart_obj->uart, &ch, 1, 0) != HAL_OK) {
        ch = 0;
    }
#else
    ch = 'A';
#endif
    return ch;
}

void uart_tx_char(pyb_uart_obj_t *uart_obj, int c) {
#if 0
    uint8_t ch = c;
    HAL_UART_Transmit(&uart_obj->uart, &ch, 1, 100000);
#endif
}

void uart_tx_str(pyb_uart_obj_t *uart_obj, const char *str) {
#if 0
    HAL_UART_Transmit(&uart_obj->uart, (uint8_t*)str, strlen(str), 100000);
#endif
}

void uart_tx_strn(pyb_uart_obj_t *uart_obj, const char *str, uint len) {
#if 0
    HAL_UART_Transmit(&uart_obj->uart, (uint8_t*)str, len, 100000);
#endif
}

void uart_tx_strn_cooked(pyb_uart_obj_t *uart_obj, const char *str, uint len) {
    for (const char *top = str + len; str < top; str++) {
        if (*str == '\n') {
            uart_tx_char(uart_obj, '\r');
        }
        uart_tx_char(uart_obj, *str);
    }
}

/******************************************************************************/
/* MicroPython bindings                                                      */

STATIC void pyb_uart_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
    pyb_uart_obj_t *self = self_in;
    if (!self->is_enabled) {
        mp_printf(print, "UART(%lu)", self->uart_id);
    } else {
#if 0
        mp_printf(print, "UART(%lu, baudrate=%u, bits=%u, stop=%u",
            self->uart_id, self->uart.Init.BaudRate,
            self->uart.Init.WordLength == UART_WORDLENGTH_8B ? 8 : 9,
            self->uart.Init.StopBits == UART_STOPBITS_1 ? 1 : 2);
        if (self->uart.Init.Parity == UART_PARITY_NONE) {
            mp_print_str(print, ", parity=None)");
        } else {
            mp_printf(print, ", parity=%u)", self->uart.Init.Parity == UART_PARITY_EVEN ? 0 : 1);
        }
#endif
    }
}

/// \method init(baudrate, *, bits=8, stop=1, parity=None)
///
/// Initialise the SPI bus with the given parameters:
///
///   - `baudrate` is the clock rate.
///   - `bits` is the number of bits per byte, 8 or 9.
///   - `stop` is the number of stop bits, 1 or 2.
///   - `parity` is the parity, `None`, 0 (even) or 1 (odd).
STATIC const mp_arg_t pyb_uart_init_args[] = {
    { MP_QSTR_baudrate, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 9600} },
    { MP_QSTR_bits,     MP_ARG_KW_ONLY | MP_ARG_INT,  {.u_int = 8} },
    { MP_QSTR_stop,     MP_ARG_KW_ONLY | MP_ARG_INT,  {.u_int = 1} },
    { MP_QSTR_parity,   MP_ARG_KW_ONLY | MP_ARG_OBJ,  {.u_obj = mp_const_none} },
};
#define PYB_UART_INIT_NUM_ARGS MP_ARRAY_SIZE(pyb_uart_init_args)

STATIC mp_obj_t pyb_uart_init_helper(pyb_uart_obj_t *self, uint n_args, const mp_obj_t *args, mp_map_t *kw_args) {
    // parse args
    mp_arg_val_t vals[PYB_UART_INIT_NUM_ARGS];
    mp_arg_parse_all(n_args, args, kw_args, PYB_UART_INIT_NUM_ARGS, pyb_uart_init_args, vals);
#if 0
    // set the UART configuration values
    memset(&self->uart, 0, sizeof(self->uart));
    UART_InitTypeDef *init = &self->uart.Init;
    init->BaudRate = vals[0].u_int;
    init->WordLength = vals[1].u_int == 8 ? UART_WORDLENGTH_8B : UART_WORDLENGTH_9B;
    switch (vals[2].u_int) {
        case 1: init->StopBits = UART_STOPBITS_1; break;
        default: init->StopBits = UART_STOPBITS_2; break;
    }
    if (vals[3].u_obj == mp_const_none) {
        init->Parity = UART_PARITY_NONE;
    } else {
        mp_int_t parity = mp_obj_get_int(vals[3].u_obj);
        init->Parity = (parity & 1) ? UART_PARITY_ODD : UART_PARITY_EVEN;
    }
    init->Mode = UART_MODE_TX_RX;
    init->HwFlowCtl = UART_HWCONTROL_NONE;
    init->OverSampling = UART_OVERSAMPLING_16;

    // init UART (if it fails, it's because the port doesn't exist)
    if (!uart_init2(self)) {
        nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "UART port %d does not exist", self->uart_id));
    }
#endif

    return mp_const_none;
}

/// \classmethod \constructor(bus, ...)
///
/// Construct a UART object on the given bus.  `bus` can be 1-6, or 'XA', 'XB', 'YA', or 'YB'.
/// With no additional parameters, the UART object is created but not
/// initialised (it has the settings from the last initialisation of
/// the bus, if any).  If extra arguments are given, the bus is initialised.
/// See `init` for parameters of initialisation.
///
/// The physical pins of the UART busses are:
///
///   - `UART(4)` is on `XA`: `(TX, RX) = (X1, X2) = (PA0, PA1)`
///   - `UART(1)` is on `XB`: `(TX, RX) = (X9, X10) = (PB6, PB7)`
///   - `UART(6)` is on `YA`: `(TX, RX) = (Y1, Y2) = (PC6, PC7)`
///   - `UART(3)` is on `YB`: `(TX, RX) = (Y9, Y10) = (PB10, PB11)`
///   - `UART(2)` is on: `(TX, RX) = (X3, X4) = (PA2, PA3)`
STATIC mp_obj_t pyb_uart_make_new(const mp_obj_type_t *type, uint n_args, uint n_kw, const mp_obj_t *args) {
    // check arguments
    mp_arg_check_num(n_args, n_kw, 1, MP_OBJ_FUN_ARGS_MAX, true);

    // create object
    pyb_uart_obj_t *o = m_new_obj(pyb_uart_obj_t);
    o->base.type = &pyb_uart_type;

    // work out port
    o->uart_id = 0;
#if 0
    if (MP_OBJ_IS_STR(args[0])) {
        const char *port = mp_obj_str_get_str(args[0]);
        if (0) {
#if defined(PYBV10)
        } else if (strcmp(port, "XA") == 0) {
            o->uart_id = PYB_UART_XA;
        } else if (strcmp(port, "XB") == 0) {
            o->uart_id = PYB_UART_XB;
        } else if (strcmp(port, "YA") == 0) {
            o->uart_id = PYB_UART_YA;
        } else if (strcmp(port, "YB") == 0) {
            o->uart_id = PYB_UART_YB;
#endif
        } else {
            nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "UART port %s does not exist", port));
        }
    } else {
        o->uart_id = mp_obj_get_int(args[0]);
    }
#endif

    if (n_args > 1 || n_kw > 0) {
        // start the peripheral
        mp_map_t kw_args;
        mp_map_init_fixed_table(&kw_args, n_kw, args + n_args);
        pyb_uart_init_helper(o, n_args - 1, args + 1, &kw_args);
    }

    return o;
}

STATIC mp_obj_t pyb_uart_init(uint n_args, const mp_obj_t *args, mp_map_t *kw_args) {
    return pyb_uart_init_helper(args[0], n_args - 1, args + 1, kw_args);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_uart_init_obj, 1, pyb_uart_init);

/// \method deinit()
/// Turn off the UART bus.
STATIC mp_obj_t pyb_uart_deinit(mp_obj_t self_in) {
    //pyb_uart_obj_t *self = self_in;
    // TODO
    return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_uart_deinit_obj, pyb_uart_deinit);

/// \method any()
/// Return `True` if any characters waiting, else `False`.
STATIC mp_obj_t pyb_uart_any(mp_obj_t self_in) {
    pyb_uart_obj_t *self = self_in;
    if (uart_rx_any(self)) {
        return mp_const_true;
    } else {
        return mp_const_false;
    }
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_uart_any_obj, pyb_uart_any);

/// \method send(send, *, timeout=5000)
/// Send data on the bus:
///
///   - `send` is the data to send (an integer to send, or a buffer object).
///   - `timeout` is the timeout in milliseconds to wait for the send.
///
/// Return value: `None`.
STATIC const mp_arg_t pyb_uart_send_args[] = {
    { MP_QSTR_send,    MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
    { MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 5000} },
};
#define PYB_UART_SEND_NUM_ARGS MP_ARRAY_SIZE(pyb_uart_send_args)

STATIC mp_obj_t pyb_uart_send(uint n_args, const mp_obj_t *args, mp_map_t *kw_args) {
    // TODO assumes transmission size is 8-bits wide

    pyb_uart_obj_t *self = args[0];

    // parse args
    mp_arg_val_t vals[PYB_UART_SEND_NUM_ARGS];
    mp_arg_parse_all(n_args - 1, args + 1, kw_args, PYB_UART_SEND_NUM_ARGS, pyb_uart_send_args, vals);

#if 0
    // get the buffer to send from
    mp_buffer_info_t bufinfo;
    uint8_t data[1];
    pyb_buf_get_for_send(vals[0].u_obj, &bufinfo, data);

    // send the data
    HAL_StatusTypeDef status = HAL_UART_Transmit(&self->uart, bufinfo.buf, bufinfo.len, vals[1].u_int);

    if (status != HAL_OK) {
        // TODO really need a HardwareError object, or something
        nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_Exception, "HAL_UART_Transmit failed with code %d", status));
    }
#else
    (void)self;
#endif

    return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_uart_send_obj, 1, pyb_uart_send);

/// \method recv(recv, *, timeout=5000)
///
/// Receive data on the bus:
///
///   - `recv` can be an integer, which is the number of bytes to receive,
///     or a mutable buffer, which will be filled with received bytes.
///   - `timeout` is the timeout in milliseconds to wait for the receive.
///
/// Return value: if `recv` is an integer then a new buffer of the bytes received,
/// otherwise the same buffer that was passed in to `recv`.
STATIC const mp_arg_t pyb_uart_recv_args[] = {
    { MP_QSTR_recv,    MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
    { MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 5000} },
};
#define PYB_UART_RECV_NUM_ARGS MP_ARRAY_SIZE(pyb_uart_recv_args)

STATIC mp_obj_t pyb_uart_recv(uint n_args, const mp_obj_t *args, mp_map_t *kw_args) {
    // TODO assumes transmission size is 8-bits wide

    pyb_uart_obj_t *self = args[0];

#if 0
    // parse args
    mp_arg_val_t vals[PYB_UART_RECV_NUM_ARGS];
    mp_arg_parse_all(n_args - 1, args + 1, kw_args, PYB_UART_RECV_NUM_ARGS, pyb_uart_recv_args, vals);

    // get the buffer to receive into
    mp_buffer_info_t bufinfo;
    mp_obj_t o_ret = pyb_buf_get_for_recv(vals[0].u_obj, &bufinfo);

    // receive the data
    HAL_StatusTypeDef status = HAL_UART_Receive(&self->uart, bufinfo.buf, bufinfo.len, vals[1].u_int);

    if (status != HAL_OK) {
        // TODO really need a HardwareError object, or something
        nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_Exception, "HAL_UART_Receive failed with code %d", status));
    }

    // return the received data
    if (o_ret == MP_OBJ_NULL) {
        return vals[0].u_obj;
    } else {
        return mp_obj_str_builder_end(o_ret);
    }
#else
    (void)self;
    return mp_const_none;
#endif
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_uart_recv_obj, 1, pyb_uart_recv);

STATIC const mp_rom_map_elem_t pyb_uart_locals_dict_table[] = {
    // instance methods
    { MP_ROM_QSTR(MP_QSTR_init), MP_ROM_PTR(&pyb_uart_init_obj) },
    { MP_ROM_QSTR(MP_QSTR_deinit), MP_ROM_PTR(&pyb_uart_deinit_obj) },
    { MP_ROM_QSTR(MP_QSTR_any), MP_ROM_PTR(&pyb_uart_any_obj) },
    { MP_ROM_QSTR(MP_QSTR_send), MP_ROM_PTR(&pyb_uart_send_obj) },
    { MP_ROM_QSTR(MP_QSTR_recv), MP_ROM_PTR(&pyb_uart_recv_obj) },
};

STATIC MP_DEFINE_CONST_DICT(pyb_uart_locals_dict, pyb_uart_locals_dict_table);

const mp_obj_type_t pyb_uart_type = {
    { &mp_type_type },
    .name = MP_QSTR_UART,
    .print = pyb_uart_print,
    .make_new = pyb_uart_make_new,
    .locals_dict = (mp_obj_t)&pyb_uart_locals_dict,
};