CircuitPython

Source code browser

Note: This site will be taken down by the end of the year

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
/*
 * This file is part of the MicroPython project, http://micropython.org/
 *
 * The MIT License (MIT)
 *
 * Copyright (c) 2013, 2014 Damien P. George
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

#include <assert.h>
#include <stdio.h>
#include <string.h>

#include "py/gc.h"
#include "py/runtime.h"

#if MICROPY_ENABLE_GC

#if MICROPY_DEBUG_VERBOSE // print debugging info
#define DEBUG_PRINT (1)
#define DEBUG_printf DEBUG_printf
#else // don't print debugging info
#define DEBUG_PRINT (0)
#define DEBUG_printf(...) (void)0
#endif

// Uncomment this if you want to use a debugger to capture state at every allocation and free.
// #define LOG_HEAP_ACTIVITY 1

// make this 1 to dump the heap each time it changes
#define EXTENSIVE_HEAP_PROFILING (0)

#define WORDS_PER_BLOCK ((MICROPY_BYTES_PER_GC_BLOCK) / BYTES_PER_WORD)
#define BYTES_PER_BLOCK (MICROPY_BYTES_PER_GC_BLOCK)

// ATB = allocation table byte
// 0b00 = FREE -- free block
// 0b01 = HEAD -- head of a chain of blocks
// 0b10 = TAIL -- in the tail of a chain of blocks
// 0b11 = MARK -- marked head block

#define AT_FREE (0)
#define AT_HEAD (1)
#define AT_TAIL (2)
#define AT_MARK (3)

#define BLOCKS_PER_ATB (4)

#define BLOCK_SHIFT(block) (2 * ((block) & (BLOCKS_PER_ATB - 1)))
#define ATB_GET_KIND(block) ((MP_STATE_MEM(gc_alloc_table_start)[(block) / BLOCKS_PER_ATB] >> BLOCK_SHIFT(block)) & 3)
#define ATB_ANY_TO_FREE(block) do { MP_STATE_MEM(gc_alloc_table_start)[(block) / BLOCKS_PER_ATB] &= (~(AT_MARK << BLOCK_SHIFT(block))); } while (0)
#define ATB_FREE_TO_HEAD(block) do { MP_STATE_MEM(gc_alloc_table_start)[(block) / BLOCKS_PER_ATB] |= (AT_HEAD << BLOCK_SHIFT(block)); } while (0)
#define ATB_FREE_TO_TAIL(block) do { MP_STATE_MEM(gc_alloc_table_start)[(block) / BLOCKS_PER_ATB] |= (AT_TAIL << BLOCK_SHIFT(block)); } while (0)
#define ATB_HEAD_TO_MARK(block) do { MP_STATE_MEM(gc_alloc_table_start)[(block) / BLOCKS_PER_ATB] |= (AT_MARK << BLOCK_SHIFT(block)); } while (0)
#define ATB_MARK_TO_HEAD(block) do { MP_STATE_MEM(gc_alloc_table_start)[(block) / BLOCKS_PER_ATB] &= (~(AT_TAIL << BLOCK_SHIFT(block))); } while (0)

#define BLOCK_FROM_PTR(ptr) (((byte*)(ptr) - MP_STATE_MEM(gc_pool_start)) / BYTES_PER_BLOCK)
#define PTR_FROM_BLOCK(block) (((block) * BYTES_PER_BLOCK + (uintptr_t)MP_STATE_MEM(gc_pool_start)))
#define ATB_FROM_BLOCK(bl) ((bl) / BLOCKS_PER_ATB)

#if MICROPY_ENABLE_FINALISER
// FTB = finaliser table byte
// if set, then the corresponding block may have a finaliser

#define BLOCKS_PER_FTB (8)

#define FTB_GET(block) ((MP_STATE_MEM(gc_finaliser_table_start)[(block) / BLOCKS_PER_FTB] >> ((block) & 7)) & 1)
#define FTB_SET(block) do { MP_STATE_MEM(gc_finaliser_table_start)[(block) / BLOCKS_PER_FTB] |= (1 << ((block) & 7)); } while (0)
#define FTB_CLEAR(block) do { MP_STATE_MEM(gc_finaliser_table_start)[(block) / BLOCKS_PER_FTB] &= (~(1 << ((block) & 7))); } while (0)
#endif

#if MICROPY_PY_THREAD && !MICROPY_PY_THREAD_GIL
#define GC_ENTER() mp_thread_mutex_lock(&MP_STATE_MEM(gc_mutex), 1)
#define GC_EXIT() mp_thread_mutex_unlock(&MP_STATE_MEM(gc_mutex))
#else
#define GC_ENTER()
#define GC_EXIT()
#endif

#ifdef LOG_HEAP_ACTIVITY
volatile uint32_t change_me;
#pragma GCC push_options
#pragma GCC optimize ("O0")
void __attribute__ ((noinline)) gc_log_change(uint32_t start_block, uint32_t length) {
    change_me += start_block;
    change_me += length; // Break on this line.
}
#pragma GCC pop_options
#endif

// TODO waste less memory; currently requires that all entries in alloc_table have a corresponding block in pool
void gc_init(void *start, void *end) {
    // align end pointer on block boundary
    end = (void*)((uintptr_t)end & (~(BYTES_PER_BLOCK - 1)));
    DEBUG_printf("Initializing GC heap: %p..%p = " UINT_FMT " bytes\n", start, end, (byte*)end - (byte*)start);

    // calculate parameters for GC (T=total, A=alloc table, F=finaliser table, P=pool; all in bytes):
    // T = A + F + P
    //     F = A * BLOCKS_PER_ATB / BLOCKS_PER_FTB
    //     P = A * BLOCKS_PER_ATB * BYTES_PER_BLOCK
    // => T = A * (1 + BLOCKS_PER_ATB / BLOCKS_PER_FTB + BLOCKS_PER_ATB * BYTES_PER_BLOCK)
    size_t total_byte_len = (byte*)end - (byte*)start;
#if MICROPY_ENABLE_FINALISER
    MP_STATE_MEM(gc_alloc_table_byte_len) = total_byte_len * BITS_PER_BYTE / (BITS_PER_BYTE + BITS_PER_BYTE * BLOCKS_PER_ATB / BLOCKS_PER_FTB + BITS_PER_BYTE * BLOCKS_PER_ATB * BYTES_PER_BLOCK);
#else
    MP_STATE_MEM(gc_alloc_table_byte_len) = total_byte_len / (1 + BITS_PER_BYTE / 2 * BYTES_PER_BLOCK);
#endif

    MP_STATE_MEM(gc_alloc_table_start) = (byte*)start;

#if MICROPY_ENABLE_FINALISER
    size_t gc_finaliser_table_byte_len = (MP_STATE_MEM(gc_alloc_table_byte_len) * BLOCKS_PER_ATB + BLOCKS_PER_FTB - 1) / BLOCKS_PER_FTB;
    MP_STATE_MEM(gc_finaliser_table_start) = MP_STATE_MEM(gc_alloc_table_start) + MP_STATE_MEM(gc_alloc_table_byte_len);
#endif

    size_t gc_pool_block_len = MP_STATE_MEM(gc_alloc_table_byte_len) * BLOCKS_PER_ATB;
    MP_STATE_MEM(gc_pool_start) = (byte*)end - gc_pool_block_len * BYTES_PER_BLOCK;
    MP_STATE_MEM(gc_pool_end) = end;

#if MICROPY_ENABLE_FINALISER
    assert(MP_STATE_MEM(gc_pool_start) >= MP_STATE_MEM(gc_finaliser_table_start) + gc_finaliser_table_byte_len);
#endif

    // clear ATBs
    memset(MP_STATE_MEM(gc_alloc_table_start), 0, MP_STATE_MEM(gc_alloc_table_byte_len));

#if MICROPY_ENABLE_FINALISER
    // clear FTBs
    memset(MP_STATE_MEM(gc_finaliser_table_start), 0, gc_finaliser_table_byte_len);
#endif

    // Set first free ATB index to the start of the heap.
    MP_STATE_MEM(gc_first_free_atb_index) = 0;
    // Set last free ATB index to the end of the heap.
    MP_STATE_MEM(gc_last_free_atb_index) = MP_STATE_MEM(gc_alloc_table_byte_len) - 1;
    // Set the lowest long lived ptr to the end of the heap to start. This will be lowered as long
    // lived objects are allocated.
    MP_STATE_MEM(gc_lowest_long_lived_ptr) = (void*) PTR_FROM_BLOCK(MP_STATE_MEM(gc_alloc_table_byte_len * BLOCKS_PER_ATB));

    // unlock the GC
    MP_STATE_MEM(gc_lock_depth) = 0;

    // allow auto collection
    MP_STATE_MEM(gc_auto_collect_enabled) = true;

    #if MICROPY_GC_ALLOC_THRESHOLD
    // by default, maxuint for gc threshold, effectively turning gc-by-threshold off
    MP_STATE_MEM(gc_alloc_threshold) = (size_t)-1;
    MP_STATE_MEM(gc_alloc_amount) = 0;
    #endif

    #if MICROPY_PY_THREAD
    mp_thread_mutex_init(&MP_STATE_MEM(gc_mutex));
    #endif

    DEBUG_printf("GC layout:\n");
    DEBUG_printf("  alloc table at %p, length " UINT_FMT " bytes, " UINT_FMT " blocks\n", MP_STATE_MEM(gc_alloc_table_start), MP_STATE_MEM(gc_alloc_table_byte_len), MP_STATE_MEM(gc_alloc_table_byte_len) * BLOCKS_PER_ATB);
#if MICROPY_ENABLE_FINALISER
    DEBUG_printf("  finaliser table at %p, length " UINT_FMT " bytes, " UINT_FMT " blocks\n", MP_STATE_MEM(gc_finaliser_table_start), gc_finaliser_table_byte_len, gc_finaliser_table_byte_len * BLOCKS_PER_FTB);
#endif
    DEBUG_printf("  pool at %p, length " UINT_FMT " bytes, " UINT_FMT " blocks\n", MP_STATE_MEM(gc_pool_start), gc_pool_block_len * BYTES_PER_BLOCK, gc_pool_block_len);
}

void gc_lock(void) {
    GC_ENTER();
    MP_STATE_MEM(gc_lock_depth)++;
    GC_EXIT();
}

void gc_unlock(void) {
    GC_ENTER();
    MP_STATE_MEM(gc_lock_depth)--;
    GC_EXIT();
}

bool gc_is_locked(void) {
    return MP_STATE_MEM(gc_lock_depth) != 0;
}

// ptr should be of type void*
#define VERIFY_PTR(ptr) ( \
        ((uintptr_t)(ptr) & (BYTES_PER_BLOCK - 1)) == 0      /* must be aligned on a block */ \
        && ptr >= (void*)MP_STATE_MEM(gc_pool_start)     /* must be above start of pool */ \
        && ptr < (void*)MP_STATE_MEM(gc_pool_end)        /* must be below end of pool */ \
    )

// ptr should be of type void*
#define VERIFY_MARK_AND_PUSH(ptr) \
    do { \
        if (VERIFY_PTR(ptr)) { \
            size_t _block = BLOCK_FROM_PTR(ptr); \
            if (ATB_GET_KIND(_block) == AT_HEAD) { \
                /* an unmarked head, mark it, and push it on gc stack */ \
                DEBUG_printf("gc_mark(%p)\n", ptr); \
                ATB_HEAD_TO_MARK(_block); \
                if (MP_STATE_MEM(gc_sp) < &MP_STATE_MEM(gc_stack)[MICROPY_ALLOC_GC_STACK_SIZE]) { \
                    *MP_STATE_MEM(gc_sp)++ = _block; \
                } else { \
                    MP_STATE_MEM(gc_stack_overflow) = 1; \
                } \
            } \
        } \
    } while (0)

STATIC void gc_drain_stack(void) {
    while (MP_STATE_MEM(gc_sp) > MP_STATE_MEM(gc_stack)) {
        // pop the next block off the stack
        size_t block = *--MP_STATE_MEM(gc_sp);

        // work out number of consecutive blocks in the chain starting with this one
        size_t n_blocks = 0;
        do {
            n_blocks += 1;
        } while (ATB_GET_KIND(block + n_blocks) == AT_TAIL);

        // check this block's children
        void **ptrs = (void**)PTR_FROM_BLOCK(block);
        for (size_t i = n_blocks * BYTES_PER_BLOCK / sizeof(void*); i > 0; i--, ptrs++) {
            void *ptr = *ptrs;
            VERIFY_MARK_AND_PUSH(ptr);
        }
    }
}

STATIC void gc_deal_with_stack_overflow(void) {
    while (MP_STATE_MEM(gc_stack_overflow)) {
        MP_STATE_MEM(gc_stack_overflow) = 0;
        MP_STATE_MEM(gc_sp) = MP_STATE_MEM(gc_stack);

        // scan entire memory looking for blocks which have been marked but not their children
        for (size_t block = 0; block < MP_STATE_MEM(gc_alloc_table_byte_len) * BLOCKS_PER_ATB; block++) {
            // trace (again) if mark bit set
            if (ATB_GET_KIND(block) == AT_MARK) {
                *MP_STATE_MEM(gc_sp)++ = block;
                gc_drain_stack();
            }
        }
    }
}

STATIC void gc_sweep(void) {
    #if MICROPY_PY_GC_COLLECT_RETVAL
    MP_STATE_MEM(gc_collected) = 0;
    #endif
    // free unmarked heads and their tails
    int free_tail = 0;
    for (size_t block = 0; block < MP_STATE_MEM(gc_alloc_table_byte_len) * BLOCKS_PER_ATB; block++) {
        switch (ATB_GET_KIND(block)) {
            case AT_HEAD:
#if MICROPY_ENABLE_FINALISER
                if (FTB_GET(block)) {
                    mp_obj_base_t *obj = (mp_obj_base_t*)PTR_FROM_BLOCK(block);
                    if (obj->type != NULL) {
                        // if the object has a type then see if it has a __del__ method
                        mp_obj_t dest[2];
                        mp_load_method_maybe(MP_OBJ_FROM_PTR(obj), MP_QSTR___del__, dest);
                        if (dest[0] != MP_OBJ_NULL) {
                            // load_method returned a method, execute it in a protected environment
                            #if MICROPY_ENABLE_SCHEDULER
                            mp_sched_lock();
                            #endif
                            mp_call_function_1_protected(dest[0], dest[1]);
                            #if MICROPY_ENABLE_SCHEDULER
                            mp_sched_unlock();
                            #endif
                        }
                    }
                    // clear finaliser flag
                    FTB_CLEAR(block);
                }
#endif
                free_tail = 1;
                ATB_ANY_TO_FREE(block);
                DEBUG_printf("gc_sweep(%x)\n", PTR_FROM_BLOCK(block));

                #ifdef LOG_HEAP_ACTIVITY
                gc_log_change(block, 0);
                #endif
                #if MICROPY_PY_GC_COLLECT_RETVAL
                MP_STATE_MEM(gc_collected)++;
                #endif
                break;

            case AT_TAIL:
                if (free_tail) {
                    ATB_ANY_TO_FREE(block);
                }
                break;

            case AT_MARK:
                ATB_MARK_TO_HEAD(block);
                free_tail = 0;
                break;
        }
    }
}

void gc_collect_start(void) {
    GC_ENTER();
    MP_STATE_MEM(gc_lock_depth)++;
    #if MICROPY_GC_ALLOC_THRESHOLD
    MP_STATE_MEM(gc_alloc_amount) = 0;
    #endif
    MP_STATE_MEM(gc_stack_overflow) = 0;
    MP_STATE_MEM(gc_sp) = MP_STATE_MEM(gc_stack);
    // Trace root pointers.  This relies on the root pointers being organised
    // correctly in the mp_state_ctx structure.  We scan nlr_top, dict_locals,
    // dict_globals, then the root pointer section of mp_state_vm.
    void **ptrs = (void**)(void*)&mp_state_ctx;
    gc_collect_root(ptrs, offsetof(mp_state_ctx_t, vm.qstr_last_chunk) / sizeof(void*));
}

void gc_collect_root(void **ptrs, size_t len) {
    for (size_t i = 0; i < len; i++) {
        void *ptr = ptrs[i];
        VERIFY_MARK_AND_PUSH(ptr);
        gc_drain_stack();
    }
}

void gc_collect_end(void) {
    gc_deal_with_stack_overflow();
    gc_sweep();
    MP_STATE_MEM(gc_first_free_atb_index) = 0;
    MP_STATE_MEM(gc_last_free_atb_index) = MP_STATE_MEM(gc_alloc_table_byte_len) - 1;
    MP_STATE_MEM(gc_lock_depth)--;
    GC_EXIT();
}

void gc_info(gc_info_t *info) {
    GC_ENTER();
    info->total = MP_STATE_MEM(gc_pool_end) - MP_STATE_MEM(gc_pool_start);
    info->used = 0;
    info->free = 0;
    info->max_free = 0;
    info->num_1block = 0;
    info->num_2block = 0;
    info->max_block = 0;
    bool finish = false;
    for (size_t block = 0, len = 0, len_free = 0; !finish;) {
        size_t kind = ATB_GET_KIND(block);
        switch (kind) {
            case AT_FREE:
                info->free += 1;
                len_free += 1;
                len = 0;
                break;

            case AT_HEAD:
                info->used += 1;
                len = 1;
                break;

            case AT_TAIL:
                info->used += 1;
                len += 1;
                break;

            case AT_MARK:
                // shouldn't happen
                break;
        }

        block++;
        finish = (block == MP_STATE_MEM(gc_alloc_table_byte_len) * BLOCKS_PER_ATB);
        // Get next block type if possible
        if (!finish) {
            kind = ATB_GET_KIND(block);
        }

        if (finish || kind == AT_FREE || kind == AT_HEAD) {
            if (len == 1) {
                info->num_1block += 1;
            } else if (len == 2) {
                info->num_2block += 1;
            }
            if (len > info->max_block) {
                info->max_block = len;
            }
            if (finish || kind == AT_HEAD) {
                if (len_free > info->max_free) {
                    info->max_free = len_free;
                }
                len_free = 0;
            }
        }
    }

    info->used *= BYTES_PER_BLOCK;
    info->free *= BYTES_PER_BLOCK;
    GC_EXIT();
}

// We place long lived objects at the end of the heap rather than the start. This reduces
// fragmentation by localizing the heap churn to one portion of memory (the start of the heap.)
void *gc_alloc(size_t n_bytes, bool has_finaliser, bool long_lived) {
    size_t n_blocks = ((n_bytes + BYTES_PER_BLOCK - 1) & (~(BYTES_PER_BLOCK - 1))) / BYTES_PER_BLOCK;
    DEBUG_printf("gc_alloc(" UINT_FMT " bytes -> " UINT_FMT " blocks)\n", n_bytes, n_blocks);

    // check for 0 allocation
    if (n_blocks == 0) {
        return NULL;
    }

    GC_ENTER();

    // check if GC is locked
    if (MP_STATE_MEM(gc_lock_depth) > 0) {
        GC_EXIT();
        return NULL;
    }

    size_t found_block = 0xffffffff;
    size_t end_block;
    size_t start_block;
    size_t n_free;
    bool collected = !MP_STATE_MEM(gc_auto_collect_enabled);

    #if MICROPY_GC_ALLOC_THRESHOLD
    if (!collected && MP_STATE_MEM(gc_alloc_amount) >= MP_STATE_MEM(gc_alloc_threshold)) {
        GC_EXIT();
        gc_collect();
        GC_ENTER();
        collected = true;
    }
    #endif

    bool keep_looking = true;

    // When we start searching on the other side of the crossover block we make sure to
    // perform a collect. That way we'll get the closest free block in our section.
    size_t crossover_block = BLOCK_FROM_PTR(MP_STATE_MEM(gc_lowest_long_lived_ptr));
    while (keep_looking) {
        int8_t direction = 1;
        size_t start = MP_STATE_MEM(gc_first_free_atb_index);
        if (long_lived) {
            direction = -1;
            start = MP_STATE_MEM(gc_last_free_atb_index);
        }
        n_free = 0;
        // look for a run of n_blocks available blocks
        for (size_t i = start; keep_looking && MP_STATE_MEM(gc_first_free_atb_index) <= i && i <= MP_STATE_MEM(gc_last_free_atb_index); i += direction) {
            byte a = MP_STATE_MEM(gc_alloc_table_start)[i];
            // Four ATB states are packed into a single byte.
            int j = 0;
            if (direction == -1) {
                j = 3;
            }
            for (; keep_looking && 0 <= j && j <= 3; j += direction) {
                if ((a & (0x3 << (j * 2))) == 0) {
                    if (++n_free >= n_blocks) {
                        found_block = i * BLOCKS_PER_ATB + j;
                        keep_looking = false;
                    }
                } else {
                    if (!collected) {
                        size_t block = i * BLOCKS_PER_ATB + j;
                        if ((direction == 1 && block >= crossover_block) ||
                                (direction == -1 && block < crossover_block)) {
                            keep_looking = false;
                        }
                    }
                    n_free = 0;
                }
            }
        }
        if (n_free >= n_blocks) {
            break;
        }

        GC_EXIT();
        // nothing found!
        if (collected) {
            return NULL;
        }
        DEBUG_printf("gc_alloc(" UINT_FMT "): no free mem, triggering GC\n", n_bytes);
        gc_collect();
        collected = true;
        // Try again since we've hopefully freed up space.
        keep_looking = true;
        GC_ENTER();
    }
    assert(found_block != 0xffffffff);

    // Found free space ending at found_block inclusive.
    // Also, set last free ATB index to block after last block we found, for start of
    // next scan.  To reduce fragmentation, we only do this if we were looking
    // for a single free block, which guarantees that there are no free blocks
    // before this one.  Also, whenever we free or shrink a block we must check
    // if this index needs adjusting (see gc_realloc and gc_free).
    if (!long_lived) {
        end_block = found_block;
        start_block = found_block - n_free + 1;
        if (n_blocks == 1) {
            MP_STATE_MEM(gc_first_free_atb_index) = (found_block + 1) / BLOCKS_PER_ATB;
        }
    } else {
        start_block = found_block;
        end_block = found_block + n_free - 1;
        if (n_blocks == 1) {
            MP_STATE_MEM(gc_last_free_atb_index) = (found_block - 1) / BLOCKS_PER_ATB;
        }
    }

    #ifdef LOG_HEAP_ACTIVITY
    gc_log_change(start_block, end_block - start_block + 1);
    #endif

    // mark first block as used head
    ATB_FREE_TO_HEAD(start_block);

    // mark rest of blocks as used tail
    // TODO for a run of many blocks can make this more efficient
    for (size_t bl = start_block + 1; bl <= end_block; bl++) {
        ATB_FREE_TO_TAIL(bl);
    }

    // get pointer to first block
    // we must create this pointer before unlocking the GC so a collection can find it
    void *ret_ptr = (void*)(MP_STATE_MEM(gc_pool_start) + start_block * BYTES_PER_BLOCK);
    DEBUG_printf("gc_alloc(%p)\n", ret_ptr);

    // If the allocation was long live then update the lowest value. Its used to trigger early
    // collects when allocations fail in their respective section. Its also used to ignore calls to
    // gc_make_long_lived where the pointer is already in the long lived section.
    if (long_lived && ret_ptr < MP_STATE_MEM(gc_lowest_long_lived_ptr)) {
        MP_STATE_MEM(gc_lowest_long_lived_ptr) = ret_ptr;
    }

    #if MICROPY_GC_ALLOC_THRESHOLD
    MP_STATE_MEM(gc_alloc_amount) += n_blocks;
    #endif

    GC_EXIT();

    #if MICROPY_GC_CONSERVATIVE_CLEAR
    // be conservative and zero out all the newly allocated blocks
    memset((byte*)ret_ptr, 0, (end_block - start_block + 1) * BYTES_PER_BLOCK);
    #else
    // zero out the additional bytes of the newly allocated blocks
    // This is needed because the blocks may have previously held pointers
    // to the heap and will not be set to something else if the caller
    // doesn't actually use the entire block.  As such they will continue
    // to point to the heap and may prevent other blocks from being reclaimed.
    memset((byte*)ret_ptr + n_bytes, 0, (end_block - start_block + 1) * BYTES_PER_BLOCK - n_bytes);
    #endif

    #if MICROPY_ENABLE_FINALISER
    if (has_finaliser) {
        // clear type pointer in case it is never set
        ((mp_obj_base_t*)ret_ptr)->type = NULL;
        // set mp_obj flag only if it has a finaliser
        GC_ENTER();
        FTB_SET(start_block);
        GC_EXIT();
    }
    #else
    (void)has_finaliser;
    #endif

    #if EXTENSIVE_HEAP_PROFILING
    gc_dump_alloc_table();
    #endif

    return ret_ptr;
}

/*
void *gc_alloc(mp_uint_t n_bytes) {
    return _gc_alloc(n_bytes, false);
}

void *gc_alloc_with_finaliser(mp_uint_t n_bytes) {
    return _gc_alloc(n_bytes, true);
}
*/

// force the freeing of a piece of memory
// TODO: freeing here does not call finaliser
void gc_free(void *ptr) {
    GC_ENTER();
    if (MP_STATE_MEM(gc_lock_depth) > 0) {
        // TODO how to deal with this error?
        GC_EXIT();
        return;
    }

    DEBUG_printf("gc_free(%p)\n", ptr);

    if (ptr == NULL) {
        GC_EXIT();
    } else {
        // get the GC block number corresponding to this pointer
        assert(VERIFY_PTR(ptr));
        size_t block = BLOCK_FROM_PTR(ptr);
        assert(ATB_GET_KIND(block) == AT_HEAD);

        #if MICROPY_ENABLE_FINALISER
        FTB_CLEAR(block);
        #endif

        // set the last_free pointer to this block if it's earlier in the heap
        if (block / BLOCKS_PER_ATB < MP_STATE_MEM(gc_first_free_atb_index)) {
            MP_STATE_MEM(gc_first_free_atb_index) = block / BLOCKS_PER_ATB;
        }
        if (block / BLOCKS_PER_ATB > MP_STATE_MEM(gc_last_free_atb_index)) {
            MP_STATE_MEM(gc_last_free_atb_index) = block / BLOCKS_PER_ATB;
        }

        // free head and all of its tail blocks
            #ifdef LOG_HEAP_ACTIVITY
            gc_log_change(block, 0);
            #endif
        do {
            ATB_ANY_TO_FREE(block);
            block += 1;
        } while (ATB_GET_KIND(block) == AT_TAIL);

        GC_EXIT();

        #if EXTENSIVE_HEAP_PROFILING
        gc_dump_alloc_table();
        #endif
    }
}

size_t gc_nbytes(const void *ptr) {
    GC_ENTER();
    if (VERIFY_PTR(ptr)) {
        size_t block = BLOCK_FROM_PTR(ptr);
        if (ATB_GET_KIND(block) == AT_HEAD) {
            // work out number of consecutive blocks in the chain starting with this on
            size_t n_blocks = 0;
            do {
                n_blocks += 1;
            } while (ATB_GET_KIND(block + n_blocks) == AT_TAIL);
            GC_EXIT();
            return n_blocks * BYTES_PER_BLOCK;
        }
    }

    // invalid pointer
    GC_EXIT();
    return 0;
}

bool gc_has_finaliser(const void *ptr) {
#if MICROPY_ENABLE_FINALISER
    GC_ENTER();
    if (VERIFY_PTR(ptr)) {
        bool has_finaliser = FTB_GET(BLOCK_FROM_PTR(ptr));
        GC_EXIT();
        return has_finaliser;
    }

    // invalid pointer
    GC_EXIT();
#else
    (void) ptr;
#endif
    return false;
}

void *gc_make_long_lived(void *old_ptr) {
    // If its already in the long lived section then don't bother moving it.
    if (old_ptr >= MP_STATE_MEM(gc_lowest_long_lived_ptr)) {
        return old_ptr;
    }
    size_t n_bytes = gc_nbytes(old_ptr);
    if (n_bytes == 0) {
        return old_ptr;
    }
    bool has_finaliser = gc_has_finaliser(old_ptr);

    // Try and find a new area in the long lived section to copy the memory to.
    void* new_ptr = gc_alloc(n_bytes, has_finaliser, true);
    if (new_ptr == NULL) {
        return old_ptr;
    } else if (old_ptr > new_ptr) {
        // Return the old pointer if the new one is lower in the heap and free the new space.
        gc_free(new_ptr);
        return old_ptr;
    }
    // We copy everything over and let the garbage collection process delete the old copy. That way
    // we ensure we don't delete memory that has a second reference. (Though if there is we may
    // confuse things when its mutable.)
    memcpy(new_ptr, old_ptr, n_bytes);
    return new_ptr;
}

#if 0
// old, simple realloc that didn't expand memory in place
void *gc_realloc(void *ptr, mp_uint_t n_bytes) {
    mp_uint_t n_existing = gc_nbytes(ptr);
    if (n_bytes <= n_existing) {
        return ptr;
    } else {
        bool has_finaliser;
        if (ptr == NULL) {
            has_finaliser = false;
        } else {
#if MICROPY_ENABLE_FINALISER
            has_finaliser = FTB_GET(BLOCK_FROM_PTR((mp_uint_t)ptr));
#else
            has_finaliser = false;
#endif
        }
        void *ptr2 = gc_alloc(n_bytes, has_finaliser);
        if (ptr2 == NULL) {
            return ptr2;
        }
        memcpy(ptr2, ptr, n_existing);
        gc_free(ptr);
        return ptr2;
    }
}

#else // Alternative gc_realloc impl

void *gc_realloc(void *ptr_in, size_t n_bytes, bool allow_move) {
    // check for pure allocation
    if (ptr_in == NULL) {
        return gc_alloc(n_bytes, false, false);
    }

    // check for pure free
    if (n_bytes == 0) {
        gc_free(ptr_in);
        return NULL;
    }

    void *ptr = ptr_in;

    // sanity check the ptr
    if (!VERIFY_PTR(ptr)) {
        return NULL;
    }

    // get first block
    size_t block = BLOCK_FROM_PTR(ptr);

    GC_ENTER();

    // sanity check the ptr is pointing to the head of a block
    if (ATB_GET_KIND(block) != AT_HEAD) {
        GC_EXIT();
        return NULL;
    }

    if (MP_STATE_MEM(gc_lock_depth) > 0) {
        GC_EXIT();
        return NULL;
    }

    // compute number of new blocks that are requested
    size_t new_blocks = (n_bytes + BYTES_PER_BLOCK - 1) / BYTES_PER_BLOCK;

    // Get the total number of consecutive blocks that are already allocated to
    // this chunk of memory, and then count the number of free blocks following
    // it.  Stop if we reach the end of the heap, or if we find enough extra
    // free blocks to satisfy the realloc.  Note that we need to compute the
    // total size of the existing memory chunk so we can correctly and
    // efficiently shrink it (see below for shrinking code).
    size_t n_free   = 0;
    size_t n_blocks = 1; // counting HEAD block
    size_t max_block = MP_STATE_MEM(gc_alloc_table_byte_len) * BLOCKS_PER_ATB;
    for (size_t bl = block + n_blocks; bl < max_block; bl++) {
        byte block_type = ATB_GET_KIND(bl);
        if (block_type == AT_TAIL) {
            n_blocks++;
            continue;
        }
        if (block_type == AT_FREE) {
            n_free++;
            if (n_blocks + n_free >= new_blocks) {
                // stop as soon as we find enough blocks for n_bytes
                break;
            }
            continue;
        }
        break;
    }

    // return original ptr if it already has the requested number of blocks
    if (new_blocks == n_blocks) {
        GC_EXIT();
        return ptr_in;
    }

    // check if we can shrink the allocated area
    if (new_blocks < n_blocks) {
        // free unneeded tail blocks
        for (size_t bl = block + new_blocks, count = n_blocks - new_blocks; count > 0; bl++, count--) {
            ATB_ANY_TO_FREE(bl);
        }

        // set the last_free pointer to end of this block if it's earlier in the heap
        if ((block + new_blocks) / BLOCKS_PER_ATB < MP_STATE_MEM(gc_first_free_atb_index)) {
            MP_STATE_MEM(gc_first_free_atb_index) = (block + new_blocks) / BLOCKS_PER_ATB;
        }
        if ((block + new_blocks) / BLOCKS_PER_ATB > MP_STATE_MEM(gc_last_free_atb_index)) {
            MP_STATE_MEM(gc_last_free_atb_index) = (block + new_blocks) / BLOCKS_PER_ATB;
        }

        GC_EXIT();

        #if EXTENSIVE_HEAP_PROFILING
        gc_dump_alloc_table();
        #endif

        #ifdef LOG_HEAP_ACTIVITY
        gc_log_change(block, new_blocks);
        #endif

        return ptr_in;
    }

    // check if we can expand in place
    if (new_blocks <= n_blocks + n_free) {
        // mark few more blocks as used tail
        for (size_t bl = block + n_blocks; bl < block + new_blocks; bl++) {
            assert(ATB_GET_KIND(bl) == AT_FREE);
            ATB_FREE_TO_TAIL(bl);
        }

        GC_EXIT();

        #if MICROPY_GC_CONSERVATIVE_CLEAR
        // be conservative and zero out all the newly allocated blocks
        memset((byte*)ptr_in + n_blocks * BYTES_PER_BLOCK, 0, (new_blocks - n_blocks) * BYTES_PER_BLOCK);
        #else
        // zero out the additional bytes of the newly allocated blocks (see comment above in gc_alloc)
        memset((byte*)ptr_in + n_bytes, 0, new_blocks * BYTES_PER_BLOCK - n_bytes);
        #endif

        #if EXTENSIVE_HEAP_PROFILING
        gc_dump_alloc_table();
        #endif

        #ifdef LOG_HEAP_ACTIVITY
        gc_log_change(block, new_blocks);
        #endif

        return ptr_in;
    }

    #if MICROPY_ENABLE_FINALISER
    bool ftb_state = FTB_GET(block);
    #else
    bool ftb_state = false;
    #endif

    GC_EXIT();

    if (!allow_move) {
        // not allowed to move memory block so return failure
        return NULL;
    }

    // can't resize inplace; try to find a new contiguous chain
    void *ptr_out = gc_alloc(n_bytes, ftb_state, false);

    // check that the alloc succeeded
    if (ptr_out == NULL) {
        return NULL;
    }

    DEBUG_printf("gc_realloc(%p -> %p)\n", ptr_in, ptr_out);
    memcpy(ptr_out, ptr_in, n_blocks * BYTES_PER_BLOCK);
    gc_free(ptr_in);
    return ptr_out;
}
#endif // Alternative gc_realloc impl

void gc_dump_info(void) {
    gc_info_t info;
    gc_info(&info);
    mp_printf(&mp_plat_print, "GC: total: %u, used: %u, free: %u\n",
        (uint)info.total, (uint)info.used, (uint)info.free);
    mp_printf(&mp_plat_print, " No. of 1-blocks: %u, 2-blocks: %u, max blk sz: %u, max free sz: %u\n",
           (uint)info.num_1block, (uint)info.num_2block, (uint)info.max_block, (uint)info.max_free);
}

void gc_dump_alloc_table(void) {
    GC_ENTER();
    static const size_t DUMP_BYTES_PER_LINE = 64;
    #if !EXTENSIVE_HEAP_PROFILING
    // When comparing heap output we don't want to print the starting
    // pointer of the heap because it changes from run to run.
    mp_printf(&mp_plat_print, "GC memory layout; from %p:", MP_STATE_MEM(gc_pool_start));
    #endif
    for (size_t bl = 0; bl < MP_STATE_MEM(gc_alloc_table_byte_len) * BLOCKS_PER_ATB; bl++) {
        if (bl % DUMP_BYTES_PER_LINE == 0) {
            // a new line of blocks
            {
                // check if this line contains only free blocks
                size_t bl2 = bl;
                while (bl2 < MP_STATE_MEM(gc_alloc_table_byte_len) * BLOCKS_PER_ATB && ATB_GET_KIND(bl2) == AT_FREE) {
                    bl2++;
                }
                if (bl2 - bl >= 2 * DUMP_BYTES_PER_LINE) {
                    // there are at least 2 lines containing only free blocks, so abbreviate their printing
                    mp_printf(&mp_plat_print, "\n       (%u lines all free)", (uint)(bl2 - bl) / DUMP_BYTES_PER_LINE);
                    bl = bl2 & (~(DUMP_BYTES_PER_LINE - 1));
                    if (bl >= MP_STATE_MEM(gc_alloc_table_byte_len) * BLOCKS_PER_ATB) {
                        // got to end of heap
                        break;
                    }
                }
            }
            // print header for new line of blocks
            // (the cast to uint32_t is for 16-bit ports)
            //mp_printf(&mp_plat_print, "\n%05x: ", (uint)(PTR_FROM_BLOCK(bl) & (uint32_t)0xfffff));
            mp_printf(&mp_plat_print, "\n%05x: ", (uint)((bl * BYTES_PER_BLOCK) & (uint32_t)0xfffff));
        }
        int c = ' ';
        switch (ATB_GET_KIND(bl)) {
            case AT_FREE: c = '.'; break;
            /* this prints out if the object is reachable from BSS or STACK (for unix only)
            case AT_HEAD: {
                c = 'h';
                void **ptrs = (void**)(void*)&mp_state_ctx;
                mp_uint_t len = offsetof(mp_state_ctx_t, vm.stack_top) / sizeof(mp_uint_t);
                for (mp_uint_t i = 0; i < len; i++) {
                    mp_uint_t ptr = (mp_uint_t)ptrs[i];
                    if (VERIFY_PTR(ptr) && BLOCK_FROM_PTR(ptr) == bl) {
                        c = 'B';
                        break;
                    }
                }
                if (c == 'h') {
                    ptrs = (void**)&c;
                    len = ((mp_uint_t)MP_STATE_THREAD(stack_top) - (mp_uint_t)&c) / sizeof(mp_uint_t);
                    for (mp_uint_t i = 0; i < len; i++) {
                        mp_uint_t ptr = (mp_uint_t)ptrs[i];
                        if (VERIFY_PTR(ptr) && BLOCK_FROM_PTR(ptr) == bl) {
                            c = 'S';
                            break;
                        }
                    }
                }
                break;
            }
            */
            /* this prints the uPy object type of the head block */
            case AT_HEAD: {
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wcast-align"
                void **ptr = (void**)(MP_STATE_MEM(gc_pool_start) + bl * BYTES_PER_BLOCK);
#pragma GCC diagnostic pop
                if (*ptr == &mp_type_tuple) { c = 'T'; }
                else if (*ptr == &mp_type_list) { c = 'L'; }
                else if (*ptr == &mp_type_dict) { c = 'D'; }
                else if (*ptr == &mp_type_str || *ptr == &mp_type_bytes) { c = 'S'; }
                #if MICROPY_PY_BUILTINS_BYTEARRAY
                else if (*ptr == &mp_type_bytearray) { c = 'A'; }
                #endif
                #if MICROPY_PY_ARRAY
                else if (*ptr == &mp_type_array) { c = 'A'; }
                #endif
                #if MICROPY_PY_BUILTINS_FLOAT
                else if (*ptr == &mp_type_float) { c = 'F'; }
                #endif
                else if (*ptr == &mp_type_fun_bc) { c = 'B'; }
                else if (*ptr == &mp_type_module) { c = 'M'; }
                else {
                    c = 'h';
                    #if 0
                    // This code prints "Q" for qstr-pool data, and "q" for qstr-str
                    // data.  It can be useful to see how qstrs are being allocated,
                    // but is disabled by default because it is very slow.
                    for (qstr_pool_t *pool = MP_STATE_VM(last_pool); c == 'h' && pool != NULL; pool = pool->prev) {
                        if ((qstr_pool_t*)ptr == pool) {
                            c = 'Q';
                            break;
                        }
                        for (const byte **q = pool->qstrs, **q_top = pool->qstrs + pool->len; q < q_top; q++) {
                            if ((const byte*)ptr == *q) {
                                c = 'q';
                                break;
                            }
                        }
                    }
                    #endif
                }
                break;
            }
            case AT_TAIL: c = '='; break;
            case AT_MARK: c = 'm'; break;
        }
        mp_printf(&mp_plat_print, "%c", c);
    }
    mp_print_str(&mp_plat_print, "\n");
    GC_EXIT();
}

#if DEBUG_PRINT
void gc_test(void) {
    mp_uint_t len = 500;
    mp_uint_t *heap = malloc(len);
    gc_init(heap, heap + len / sizeof(mp_uint_t));
    void *ptrs[100];
    {
        mp_uint_t **p = gc_alloc(16, false);
        p[0] = gc_alloc(64, false);
        p[1] = gc_alloc(1, false);
        p[2] = gc_alloc(1, false);
        p[3] = gc_alloc(1, false);
        mp_uint_t ***p2 = gc_alloc(16, false);
        p2[0] = p;
        p2[1] = p;
        ptrs[0] = p2;
    }
    for (int i = 0; i < 25; i+=2) {
        mp_uint_t *p = gc_alloc(i, false);
        printf("p=%p\n", p);
        if (i & 3) {
            //ptrs[i] = p;
        }
    }

    printf("Before GC:\n");
    gc_dump_alloc_table();
    printf("Starting GC...\n");
    gc_collect_start();
    gc_collect_root(ptrs, sizeof(ptrs) / sizeof(void*));
    gc_collect_end();
    printf("After GC:\n");
    gc_dump_alloc_table();
}
#endif

#endif // MICROPY_ENABLE_GC