CircuitPython

Source code browser

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
/*
 * This file is part of the MicroPython project, http://micropython.org/
 *
 * The MIT License (MIT)
 *
 * Copyright (c) 2014 Paul Sokolovsky
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

#include <assert.h>
#include <string.h>
#include <stdint.h>

#include "py/runtime.h"
#include "py/objtuple.h"
#include "py/binary.h"

#if MICROPY_PY_UCTYPES

/// \module uctypes - Access data structures in memory
///
/// The module allows to define layout of raw data structure (using terms
/// of C language), and then access memory buffers using this definition.
/// The module also provides convenience functions to access memory buffers
/// contained in Python objects or wrap memory buffers in Python objects.
/// \constant UINT8_1 - uint8_t value type

/// \class struct - C-like structure
///
/// Encapsulalation of in-memory data structure. This class doesn't define
/// any methods, only attribute access (for structure fields) and
/// indexing (for pointer and array fields).
///
/// Usage:
///
///     # Define layout of a structure with 2 fields
///     # 0 and 4 are byte offsets of fields from the beginning of struct
///     # they are logically ORed with field type
///     FOO_STRUCT = {"a": 0 | uctypes.UINT32, "b": 4 | uctypes.UINT8}
///
///     # Example memory buffer to access (contained in bytes object)
///     buf = b"\x64\0\0\0\0x14"
///
///     # Create structure object referring to address of
///     # the data in the buffer above
///     s = uctypes.struct(FOO_STRUCT, uctypes.addressof(buf))
///
///     # Access fields
///     print(s.a, s.b)
///     # Result:
///     # 100, 20

#define LAYOUT_LITTLE_ENDIAN (0)
#define LAYOUT_BIG_ENDIAN    (1)
#define LAYOUT_NATIVE        (2)

#define VAL_TYPE_BITS 4
#define BITF_LEN_BITS 5
#define BITF_OFF_BITS 5
#define OFFSET_BITS 17
#if VAL_TYPE_BITS + BITF_LEN_BITS + BITF_OFF_BITS + OFFSET_BITS != 31
#error Invalid encoding field length
#endif

enum {
    UINT8, INT8, UINT16, INT16,
    UINT32, INT32, UINT64, INT64,

    BFUINT8, BFINT8, BFUINT16, BFINT16,
    BFUINT32, BFINT32,

    FLOAT32, FLOAT64,
};

#define AGG_TYPE_BITS 2

enum {
    STRUCT, PTR, ARRAY, BITFIELD,
};

// Here we need to set sign bit right
#define TYPE2SMALLINT(x, nbits) ((((int)x) << (32 - nbits)) >> 1)
#define GET_TYPE(x, nbits) (((x) >> (31 - nbits)) & ((1 << nbits) - 1))
// Bit 0 is "is_signed"
#define GET_SCALAR_SIZE(val_type) (1 << ((val_type) >> 1))
#define VALUE_MASK(type_nbits) ~((int)0x80000000 >> type_nbits)

#define IS_SCALAR_ARRAY(tuple_desc) ((tuple_desc)->len == 2)
// We cannot apply the below to INT8, as their range [-128, 127]
#define IS_SCALAR_ARRAY_OF_BYTES(tuple_desc) (GET_TYPE(MP_OBJ_SMALL_INT_VALUE((tuple_desc)->items[1]), VAL_TYPE_BITS) == UINT8)

// "struct" in uctypes context means "structural", i.e. aggregate, type.
STATIC const mp_obj_type_t uctypes_struct_type;

typedef struct _mp_obj_uctypes_struct_t {
    mp_obj_base_t base;
    mp_obj_t desc;
    byte *addr;
    uint32_t flags;
} mp_obj_uctypes_struct_t;

STATIC NORETURN void syntax_error(void) {
    mp_raise_TypeError("syntax error in uctypes descriptor");
}

STATIC mp_obj_t uctypes_struct_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
    mp_arg_check_num(n_args, n_kw, 2, 3, false);
    mp_obj_uctypes_struct_t *o = m_new_obj(mp_obj_uctypes_struct_t);
    o->base.type = type;
    o->addr = (void*)(uintptr_t)mp_obj_int_get_truncated(args[0]);
    o->desc = args[1];
    o->flags = LAYOUT_NATIVE;
    if (n_args == 3) {
        o->flags = mp_obj_get_int(args[2]);
    }
    return MP_OBJ_FROM_PTR(o);
}

STATIC void uctypes_struct_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
    (void)kind;
    mp_obj_uctypes_struct_t *self = MP_OBJ_TO_PTR(self_in);
    const char *typen = "unk";
    if (MP_OBJ_IS_TYPE(self->desc, &mp_type_dict)) {
        typen = "STRUCT";
    } else if (MP_OBJ_IS_TYPE(self->desc, &mp_type_tuple)) {
        mp_obj_tuple_t *t = MP_OBJ_TO_PTR(self->desc);
        mp_int_t offset = MP_OBJ_SMALL_INT_VALUE(t->items[0]);
        uint agg_type = GET_TYPE(offset, AGG_TYPE_BITS);
        switch (agg_type) {
            case PTR: typen = "PTR"; break;
            case ARRAY: typen = "ARRAY"; break;
        }
    } else {
        typen = "ERROR";
    }
    mp_printf(print, "<struct %s %p>", typen, self->addr);
}

// Get size of any type descriptor
STATIC mp_uint_t uctypes_struct_size(mp_obj_t desc_in, int layout_type, mp_uint_t *max_field_size);

// Get size of scalar type descriptor
static inline mp_uint_t uctypes_struct_scalar_size(int val_type) {
    if (val_type == FLOAT32) {
        return 4;
    } else {
        return GET_SCALAR_SIZE(val_type & 7);
    }
}

// Get size of aggregate type descriptor
STATIC mp_uint_t uctypes_struct_agg_size(mp_obj_tuple_t *t, int layout_type, mp_uint_t *max_field_size) {
    mp_uint_t total_size = 0;

    mp_int_t offset_ = MP_OBJ_SMALL_INT_VALUE(t->items[0]);
    mp_uint_t agg_type = GET_TYPE(offset_, AGG_TYPE_BITS);

    switch (agg_type) {
        case STRUCT:
            return uctypes_struct_size(t->items[1], layout_type, max_field_size);
        case PTR:
            if (sizeof(void*) > *max_field_size) {
                *max_field_size = sizeof(void*);
            }
            return sizeof(void*);
        case ARRAY: {
            mp_int_t arr_sz = MP_OBJ_SMALL_INT_VALUE(t->items[1]);
            uint val_type = GET_TYPE(arr_sz, VAL_TYPE_BITS);
            arr_sz &= VALUE_MASK(VAL_TYPE_BITS);
            mp_uint_t item_s;
            if (t->len == 2) {
                // Elements of array are scalar
                item_s = GET_SCALAR_SIZE(val_type);
                if (item_s > *max_field_size) {
                    *max_field_size = item_s;
                }
            } else {
                // Elements of array are aggregates
                item_s = uctypes_struct_size(t->items[2], layout_type, max_field_size);
            }

            return item_s * arr_sz;
        }
        default:
            assert(0);
    }

    return total_size;
}

STATIC mp_uint_t uctypes_struct_size(mp_obj_t desc_in, int layout_type, mp_uint_t *max_field_size) {
    if (!MP_OBJ_IS_TYPE(desc_in, &mp_type_dict)) {
        if (MP_OBJ_IS_TYPE(desc_in, &mp_type_tuple)) {
            return uctypes_struct_agg_size((mp_obj_tuple_t*)MP_OBJ_TO_PTR(desc_in), layout_type, max_field_size);
        } else if (MP_OBJ_IS_SMALL_INT(desc_in)) {
            // We allow sizeof on both type definitions and structures/structure fields,
            // but scalar structure field is lowered into native Python int, so all
            // type info is lost. So, we cannot say if it's scalar type description,
            // or such lowered scalar.
            mp_raise_TypeError("Cannot unambiguously get sizeof scalar");
        }
        syntax_error();
    }

    mp_obj_dict_t *d = MP_OBJ_TO_PTR(desc_in);
    mp_uint_t total_size = 0;

    for (mp_uint_t i = 0; i < d->map.alloc; i++) {
        if (MP_MAP_SLOT_IS_FILLED(&d->map, i)) {
            mp_obj_t v = d->map.table[i].value;
            if (MP_OBJ_IS_SMALL_INT(v)) {
                mp_uint_t offset = MP_OBJ_SMALL_INT_VALUE(v);
                mp_uint_t val_type = GET_TYPE(offset, VAL_TYPE_BITS);
                offset &= VALUE_MASK(VAL_TYPE_BITS);
                if (val_type >= BFUINT8 && val_type <= BFINT32) {
                    offset &= (1 << OFFSET_BITS) - 1;
                }
                mp_uint_t s = uctypes_struct_scalar_size(val_type);
                if (s > *max_field_size) {
                    *max_field_size = s;
                }
                if (offset + s > total_size) {
                    total_size = offset + s;
                }
            } else {
                if (!MP_OBJ_IS_TYPE(v, &mp_type_tuple)) {
                    syntax_error();
                }
                mp_obj_tuple_t *t = MP_OBJ_TO_PTR(v);
                mp_int_t offset = MP_OBJ_SMALL_INT_VALUE(t->items[0]);
                offset &= VALUE_MASK(AGG_TYPE_BITS);
                mp_uint_t s = uctypes_struct_agg_size(t, layout_type, max_field_size);
                if (offset + s > total_size) {
                    total_size = offset + s;
                }
            }
        }
    }

    // Round size up to alignment of biggest field
    if (layout_type == LAYOUT_NATIVE) {
        total_size = (total_size + *max_field_size - 1) & ~(*max_field_size - 1);
    }
    return total_size;
}

STATIC mp_obj_t uctypes_struct_sizeof(mp_obj_t obj_in) {
    mp_uint_t max_field_size = 0;
    if (MP_OBJ_IS_TYPE(obj_in, &mp_type_bytearray)) {
        return mp_obj_len(obj_in);
    }
    int layout_type = LAYOUT_NATIVE;
    // We can apply sizeof either to structure definition (a dict)
    // or to instantiated structure
    if (MP_OBJ_IS_TYPE(obj_in, &uctypes_struct_type)) {
        // Extract structure definition
        mp_obj_uctypes_struct_t *obj = MP_OBJ_TO_PTR(obj_in);
        obj_in = obj->desc;
        layout_type = obj->flags;
    }
    mp_uint_t size = uctypes_struct_size(obj_in, layout_type, &max_field_size);
    return MP_OBJ_NEW_SMALL_INT(size);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(uctypes_struct_sizeof_obj, uctypes_struct_sizeof);

static inline mp_obj_t get_unaligned(uint val_type, byte *p, int big_endian) {
    char struct_type = big_endian ? '>' : '<';
    static const char type2char[16] = "BbHhIiQq------fd";
    return mp_binary_get_val(struct_type, type2char[val_type], &p);
}

static inline void set_unaligned(uint val_type, byte *p, int big_endian, mp_obj_t val) {
    char struct_type = big_endian ? '>' : '<';
    static const char type2char[16] = "BbHhIiQq------fd";
    mp_binary_set_val(struct_type, type2char[val_type], val, &p);
}

static inline mp_uint_t get_aligned_basic(uint val_type, void *p) {
    switch (val_type) {
        case UINT8:
            return *(uint8_t*)p;
        case UINT16:
            return *(uint16_t*)p;
        case UINT32:
            return *(uint32_t*)p;
    }
    assert(0);
    return 0;
}

static inline void set_aligned_basic(uint val_type, void *p, mp_uint_t v) {
    switch (val_type) {
        case UINT8:
            *(uint8_t*)p = (uint8_t)v; return;
        case UINT16:
            *(uint16_t*)p = (uint16_t)v; return;
        case UINT32:
            *(uint32_t*)p = (uint32_t)v; return;
    }
    assert(0);
}

STATIC mp_obj_t get_aligned(uint val_type, void *p, mp_int_t index) {
    switch (val_type) {
        case UINT8:
            return MP_OBJ_NEW_SMALL_INT(((uint8_t*)p)[index]);
        case INT8:
            return MP_OBJ_NEW_SMALL_INT(((int8_t*)p)[index]);
        case UINT16:
            return MP_OBJ_NEW_SMALL_INT(((uint16_t*)p)[index]);
        case INT16:
            return MP_OBJ_NEW_SMALL_INT(((int16_t*)p)[index]);
        case UINT32:
            return mp_obj_new_int_from_uint(((uint32_t*)p)[index]);
        case INT32:
            return mp_obj_new_int(((int32_t*)p)[index]);
        case UINT64:
            return mp_obj_new_int_from_ull(((uint64_t*)p)[index]);
        case INT64:
            return mp_obj_new_int_from_ll(((int64_t*)p)[index]);
        #if MICROPY_PY_BUILTINS_FLOAT
        case FLOAT32:
            return mp_obj_new_float((mp_float_t)((float*)p)[index]);
        case FLOAT64:
            return mp_obj_new_float(((double*)p)[index]);
        #endif
        default:
            assert(0);
            return MP_OBJ_NULL;
    }
}

STATIC void set_aligned(uint val_type, void *p, mp_int_t index, mp_obj_t val) {
    #if MICROPY_PY_BUILTINS_FLOAT
    if (val_type == FLOAT32 || val_type == FLOAT64) {
        mp_float_t v = mp_obj_get_float(val);
        if (val_type == FLOAT32) {
            ((float*)p)[index] = v;
        } else {
            ((double*)p)[index] = v;
        }
        return;
    }
    #endif
    mp_int_t v = mp_obj_get_int_truncated(val);
    switch (val_type) {
        case UINT8:
            ((uint8_t*)p)[index] = (uint8_t)v; return;
        case INT8:
            ((int8_t*)p)[index] = (int8_t)v; return;
        case UINT16:
            ((uint16_t*)p)[index] = (uint16_t)v; return;
        case INT16:
            ((int16_t*)p)[index] = (int16_t)v; return;
        case UINT32:
            ((uint32_t*)p)[index] = (uint32_t)v; return;
        case INT32:
            ((int32_t*)p)[index] = (int32_t)v; return;
        case INT64:
        case UINT64:
            if (sizeof(mp_int_t) == 8) {
                ((uint64_t*)p)[index] = (uint64_t)v;
            } else {
                // TODO: Doesn't offer atomic store semantics, but should at least try
                set_unaligned(val_type, p, MP_ENDIANNESS_BIG, val);
            }
            return;
        default:
            assert(0);
    }
}

STATIC mp_obj_t uctypes_struct_attr_op(mp_obj_t self_in, qstr attr, mp_obj_t set_val) {
    mp_obj_uctypes_struct_t *self = MP_OBJ_TO_PTR(self_in);

    // TODO: Support at least OrderedDict in addition
    if (!MP_OBJ_IS_TYPE(self->desc, &mp_type_dict)) {
            mp_raise_TypeError("struct: no fields");
    }

    mp_obj_t deref = mp_obj_dict_get(self->desc, MP_OBJ_NEW_QSTR(attr));
    if (MP_OBJ_IS_SMALL_INT(deref)) {
        mp_int_t offset = MP_OBJ_SMALL_INT_VALUE(deref);
        mp_uint_t val_type = GET_TYPE(offset, VAL_TYPE_BITS);
        offset &= VALUE_MASK(VAL_TYPE_BITS);
//printf("scalar type=%d offset=%x\n", val_type, offset);

        if (val_type <= INT64 || val_type == FLOAT32 || val_type == FLOAT64) {
//            printf("size=%d\n", GET_SCALAR_SIZE(val_type));
            if (self->flags == LAYOUT_NATIVE) {
                if (set_val == MP_OBJ_NULL) {
                    return get_aligned(val_type, self->addr + offset, 0);
                } else {
                    set_aligned(val_type, self->addr + offset, 0, set_val);
                    return set_val; // just !MP_OBJ_NULL
                }
            } else {
                if (set_val == MP_OBJ_NULL) {
                    return get_unaligned(val_type, self->addr + offset, self->flags);
                } else {
                    set_unaligned(val_type, self->addr + offset, self->flags, set_val);
                    return set_val; // just !MP_OBJ_NULL
                }
            }
        } else if (val_type >= BFUINT8 && val_type <= BFINT32) {
            uint bit_offset = (offset >> 17) & 31;
            uint bit_len = (offset >> 22) & 31;
            offset &= (1 << 17) - 1;
            mp_uint_t val;
            if (self->flags == LAYOUT_NATIVE) {
                val = get_aligned_basic(val_type & 6, self->addr + offset);
            } else {
                val = mp_binary_get_int(GET_SCALAR_SIZE(val_type & 7), val_type & 1, self->flags, self->addr + offset);
            }
            if (set_val == MP_OBJ_NULL) {
                val >>= bit_offset;
                val &= (1 << bit_len) - 1;
                // TODO: signed
                assert((val_type & 1) == 0);
                return mp_obj_new_int(val);
            } else {
                mp_uint_t set_val_int = (mp_uint_t)mp_obj_get_int(set_val);
                mp_uint_t mask = (1 << bit_len) - 1;
                set_val_int &= mask;
                set_val_int <<= bit_offset;
                mask <<= bit_offset;
                val = (val & ~mask) | set_val_int;

                if (self->flags == LAYOUT_NATIVE) {
                    set_aligned_basic(val_type & 6, self->addr + offset, val);
                } else {
                    mp_binary_set_int(GET_SCALAR_SIZE(val_type & 7), self->flags == LAYOUT_BIG_ENDIAN,
                        self->addr + offset, val);
                }
                return set_val; // just !MP_OBJ_NULL
            }
        }

        assert(0);
        return MP_OBJ_NULL;
    }

    if (!MP_OBJ_IS_TYPE(deref, &mp_type_tuple)) {
        syntax_error();
    }

    if (set_val != MP_OBJ_NULL) {
        // Cannot assign to aggregate
        syntax_error();
    }

    mp_obj_tuple_t *sub = MP_OBJ_TO_PTR(deref);
    mp_int_t offset = MP_OBJ_SMALL_INT_VALUE(sub->items[0]);
    mp_uint_t agg_type = GET_TYPE(offset, AGG_TYPE_BITS);
    offset &= VALUE_MASK(AGG_TYPE_BITS);
//printf("agg type=%d offset=%x\n", agg_type, offset);

    switch (agg_type) {
        case STRUCT: {
            mp_obj_uctypes_struct_t *o = m_new_obj(mp_obj_uctypes_struct_t);
            o->base.type = &uctypes_struct_type;
            o->desc = sub->items[1];
            o->addr = self->addr + offset;
            o->flags = self->flags;
            return MP_OBJ_FROM_PTR(o);
        }
        case ARRAY: {
            mp_uint_t dummy;
            if (IS_SCALAR_ARRAY(sub) && IS_SCALAR_ARRAY_OF_BYTES(sub)) {
                return mp_obj_new_bytearray_by_ref(uctypes_struct_agg_size(sub, self->flags, &dummy), self->addr + offset);
            }
            // Fall thru to return uctypes struct object
        }
        case PTR: {
            mp_obj_uctypes_struct_t *o = m_new_obj(mp_obj_uctypes_struct_t);
            o->base.type = &uctypes_struct_type;
            o->desc = MP_OBJ_FROM_PTR(sub);
            o->addr = self->addr + offset;
            o->flags = self->flags;
//printf("PTR/ARR base addr=%p\n", o->addr);
            return MP_OBJ_FROM_PTR(o);
        }
    }

    // Should be unreachable once all cases are handled
    return MP_OBJ_NULL;
}

STATIC void uctypes_struct_attr(mp_obj_t self_in, qstr attr, mp_obj_t *dest) {
    if (dest[0] == MP_OBJ_NULL) {
        // load attribute
        mp_obj_t val = uctypes_struct_attr_op(self_in, attr, MP_OBJ_NULL);
        dest[0] = val;
    } else {
        // delete/store attribute
        if (uctypes_struct_attr_op(self_in, attr, dest[1]) != MP_OBJ_NULL) {
            dest[0] = MP_OBJ_NULL; // indicate success
        }
    }
}

STATIC mp_obj_t uctypes_struct_subscr(mp_obj_t self_in, mp_obj_t index_in, mp_obj_t value) {
    mp_obj_uctypes_struct_t *self = MP_OBJ_TO_PTR(self_in);

    if (value == MP_OBJ_NULL) {
        // delete
        return MP_OBJ_NULL; // op not supported
    } else {
        // load / store
        if (!MP_OBJ_IS_TYPE(self->desc, &mp_type_tuple)) {
            mp_raise_TypeError("struct: cannot index");
        }

        mp_obj_tuple_t *t = MP_OBJ_TO_PTR(self->desc);
        mp_int_t offset = MP_OBJ_SMALL_INT_VALUE(t->items[0]);
        uint agg_type = GET_TYPE(offset, AGG_TYPE_BITS);

        mp_int_t index = MP_OBJ_SMALL_INT_VALUE(index_in);

        if (agg_type == ARRAY) {
            mp_int_t arr_sz = MP_OBJ_SMALL_INT_VALUE(t->items[1]);
            uint val_type = GET_TYPE(arr_sz, VAL_TYPE_BITS);
            arr_sz &= VALUE_MASK(VAL_TYPE_BITS);
            if (index >= arr_sz) {
                nlr_raise(mp_obj_new_exception_msg(&mp_type_IndexError, "struct: index out of range"));
            }

            if (t->len == 2) {
                // array of scalars
                if (self->flags == LAYOUT_NATIVE) {
                    if (value == MP_OBJ_SENTINEL) {
                        return get_aligned(val_type, self->addr, index);
                    } else {
                        set_aligned(val_type, self->addr, index, value);
                        return value; // just !MP_OBJ_NULL
                    }
                } else {
                    byte *p = self->addr + GET_SCALAR_SIZE(val_type) * index;
                    if (value == MP_OBJ_SENTINEL) {
                        return get_unaligned(val_type, p, self->flags);
                    } else {
                        set_unaligned(val_type, p, self->flags, value);
                        return value; // just !MP_OBJ_NULL
                    }
                }
            } else if (value == MP_OBJ_SENTINEL) {
                mp_uint_t dummy = 0;
                mp_uint_t size = uctypes_struct_size(t->items[2], self->flags, &dummy);
                mp_obj_uctypes_struct_t *o = m_new_obj(mp_obj_uctypes_struct_t);
                o->base.type = &uctypes_struct_type;
                o->desc = t->items[2];
                o->addr = self->addr + size * index;
                o->flags = self->flags;
                return MP_OBJ_FROM_PTR(o);
            } else {
                return MP_OBJ_NULL; // op not supported
            }

        } else if (agg_type == PTR) {
            byte *p = *(void**)self->addr;
            if (MP_OBJ_IS_SMALL_INT(t->items[1])) {
                uint val_type = GET_TYPE(MP_OBJ_SMALL_INT_VALUE(t->items[1]), VAL_TYPE_BITS);
                return get_aligned(val_type, p, index);
            } else {
                mp_uint_t dummy = 0;
                mp_uint_t size = uctypes_struct_size(t->items[1], self->flags, &dummy);
                mp_obj_uctypes_struct_t *o = m_new_obj(mp_obj_uctypes_struct_t);
                o->base.type = &uctypes_struct_type;
                o->desc = t->items[1];
                o->addr = p + size * index;
                o->flags = self->flags;
                return MP_OBJ_FROM_PTR(o);
            }
        }

        assert(0);
        return MP_OBJ_NULL;
    }
}

STATIC mp_int_t uctypes_get_buffer(mp_obj_t self_in, mp_buffer_info_t *bufinfo, mp_uint_t flags) {
    (void)flags;
    mp_obj_uctypes_struct_t *self = MP_OBJ_TO_PTR(self_in);
    mp_uint_t max_field_size = 0;
    mp_uint_t size = uctypes_struct_size(self->desc, self->flags, &max_field_size);

    bufinfo->buf = self->addr;
    bufinfo->len = size;
    bufinfo->typecode = BYTEARRAY_TYPECODE;
    return 0;
}

/// \function addressof()
/// Return address of object's data (applies to object providing buffer
/// interface).
STATIC mp_obj_t uctypes_struct_addressof(mp_obj_t buf) {
    mp_buffer_info_t bufinfo;
    mp_get_buffer_raise(buf, &bufinfo, MP_BUFFER_READ);
    return mp_obj_new_int((mp_int_t)(uintptr_t)bufinfo.buf);
}
MP_DEFINE_CONST_FUN_OBJ_1(uctypes_struct_addressof_obj, uctypes_struct_addressof);

/// \function bytearray_at()
/// Capture memory at given address of given size as bytearray. Memory is
/// captured by reference (and thus memory pointed by bytearray may change
/// or become invalid at later time). Use bytes_at() to capture by value.
STATIC mp_obj_t uctypes_struct_bytearray_at(mp_obj_t ptr, mp_obj_t size) {
    return mp_obj_new_bytearray_by_ref(mp_obj_int_get_truncated(size), (void*)(uintptr_t)mp_obj_int_get_truncated(ptr));
}
MP_DEFINE_CONST_FUN_OBJ_2(uctypes_struct_bytearray_at_obj, uctypes_struct_bytearray_at);

/// \function bytes_at()
/// Capture memory at given address of given size as bytes. Memory is
/// captured by value, i.e. copied. Use bytearray_at() to capture by reference
/// ("zero copy").
STATIC mp_obj_t uctypes_struct_bytes_at(mp_obj_t ptr, mp_obj_t size) {
    return mp_obj_new_bytes((void*)(uintptr_t)mp_obj_int_get_truncated(ptr), mp_obj_int_get_truncated(size));
}
MP_DEFINE_CONST_FUN_OBJ_2(uctypes_struct_bytes_at_obj, uctypes_struct_bytes_at);


STATIC const mp_obj_type_t uctypes_struct_type = {
    { &mp_type_type },
    .name = MP_QSTR_struct,
    .print = uctypes_struct_print,
    .make_new = uctypes_struct_make_new,
    .attr = uctypes_struct_attr,
    .subscr = uctypes_struct_subscr,
    .buffer_p = { .get_buffer = uctypes_get_buffer },
};

STATIC const mp_rom_map_elem_t mp_module_uctypes_globals_table[] = {
    { MP_ROM_QSTR(MP_QSTR___name__), MP_ROM_QSTR(MP_QSTR_uctypes) },
    { MP_ROM_QSTR(MP_QSTR_struct), MP_ROM_PTR(&uctypes_struct_type) },
    { MP_ROM_QSTR(MP_QSTR_sizeof), MP_ROM_PTR(&uctypes_struct_sizeof_obj) },
    { MP_ROM_QSTR(MP_QSTR_addressof), MP_ROM_PTR(&uctypes_struct_addressof_obj) },
    { MP_ROM_QSTR(MP_QSTR_bytes_at), MP_ROM_PTR(&uctypes_struct_bytes_at_obj) },
    { MP_ROM_QSTR(MP_QSTR_bytearray_at), MP_ROM_PTR(&uctypes_struct_bytearray_at_obj) },

    /// \moduleref uctypes

    /// \constant NATIVE - Native structure layout - native endianness,
    /// platform-specific field alignment
    { MP_ROM_QSTR(MP_QSTR_NATIVE), MP_ROM_INT(LAYOUT_NATIVE) },
    /// \constant LITTLE_ENDIAN - Little-endian structure layout, tightly packed
    /// (no alignment constraints)
    { MP_ROM_QSTR(MP_QSTR_LITTLE_ENDIAN), MP_ROM_INT(LAYOUT_LITTLE_ENDIAN) },
    /// \constant BIG_ENDIAN - Big-endian structure layout, tightly packed
    /// (no alignment constraints)
    { MP_ROM_QSTR(MP_QSTR_BIG_ENDIAN), MP_ROM_INT(LAYOUT_BIG_ENDIAN) },

    /// \constant VOID - void value type, may be used only as pointer target type.
    { MP_ROM_QSTR(MP_QSTR_VOID), MP_ROM_INT(TYPE2SMALLINT(UINT8, VAL_TYPE_BITS)) },

    /// \constant UINT8 - uint8_t value type
    { MP_ROM_QSTR(MP_QSTR_UINT8), MP_ROM_INT(TYPE2SMALLINT(UINT8, 4)) },
    /// \constant INT8 - int8_t value type
    { MP_ROM_QSTR(MP_QSTR_INT8), MP_ROM_INT(TYPE2SMALLINT(INT8, 4)) },
    /// \constant UINT16 - uint16_t value type
    { MP_ROM_QSTR(MP_QSTR_UINT16), MP_ROM_INT(TYPE2SMALLINT(UINT16, 4)) },
    /// \constant INT16 - int16_t value type
    { MP_ROM_QSTR(MP_QSTR_INT16), MP_ROM_INT(TYPE2SMALLINT(INT16, 4)) },
    /// \constant UINT32 - uint32_t value type
    { MP_ROM_QSTR(MP_QSTR_UINT32), MP_ROM_INT(TYPE2SMALLINT(UINT32, 4)) },
    /// \constant INT32 - int32_t value type
    { MP_ROM_QSTR(MP_QSTR_INT32), MP_ROM_INT(TYPE2SMALLINT(INT32, 4)) },
    /// \constant UINT64 - uint64_t value type
    { MP_ROM_QSTR(MP_QSTR_UINT64), MP_ROM_INT(TYPE2SMALLINT(UINT64, 4)) },
    /// \constant INT64 - int64_t value type
    { MP_ROM_QSTR(MP_QSTR_INT64), MP_ROM_INT(TYPE2SMALLINT(INT64, 4)) },

    { MP_ROM_QSTR(MP_QSTR_BFUINT8), MP_ROM_INT(TYPE2SMALLINT(BFUINT8, 4)) },
    { MP_ROM_QSTR(MP_QSTR_BFINT8), MP_ROM_INT(TYPE2SMALLINT(BFINT8, 4)) },
    { MP_ROM_QSTR(MP_QSTR_BFUINT16), MP_ROM_INT(TYPE2SMALLINT(BFUINT16, 4)) },
    { MP_ROM_QSTR(MP_QSTR_BFINT16), MP_ROM_INT(TYPE2SMALLINT(BFINT16, 4)) },
    { MP_ROM_QSTR(MP_QSTR_BFUINT32), MP_ROM_INT(TYPE2SMALLINT(BFUINT32, 4)) },
    { MP_ROM_QSTR(MP_QSTR_BFINT32), MP_ROM_INT(TYPE2SMALLINT(BFINT32, 4)) },

    { MP_ROM_QSTR(MP_QSTR_BF_POS), MP_ROM_INT(17) },
    { MP_ROM_QSTR(MP_QSTR_BF_LEN), MP_ROM_INT(22) },

    #if MICROPY_PY_BUILTINS_FLOAT
    { MP_ROM_QSTR(MP_QSTR_FLOAT32), MP_ROM_INT(TYPE2SMALLINT(FLOAT32, 4)) },
    { MP_ROM_QSTR(MP_QSTR_FLOAT64), MP_ROM_INT(TYPE2SMALLINT(FLOAT64, 4)) },
    #endif

    { MP_ROM_QSTR(MP_QSTR_PTR), MP_ROM_INT(TYPE2SMALLINT(PTR, AGG_TYPE_BITS)) },
    { MP_ROM_QSTR(MP_QSTR_ARRAY), MP_ROM_INT(TYPE2SMALLINT(ARRAY, AGG_TYPE_BITS)) },
};

STATIC MP_DEFINE_CONST_DICT(mp_module_uctypes_globals, mp_module_uctypes_globals_table);

const mp_obj_module_t mp_module_uctypes = {
    .base = { &mp_type_module },
    .globals = (mp_obj_dict_t*)&mp_module_uctypes_globals,
};

#endif