CircuitPython

Source code browser

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
/*
 * This file is part of the MicroPython project, http://micropython.org/
 *
 * The MIT License (MIT)
 *
 * Copyright (c) 2015 Damien P. George
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

#include "py/mphal.h"

#if MICROPY_PY_MUSIC

// #include "microbitobj.h"
// #include "microbitmusic.h"
#include "py/obj.h"
#include "py/runtime.h"
#include "py/objstr.h"
#include "modmusic.h"
#include "musictunes.h"
#include "softpwm.h"
#include "ticker.h"
#include "pin.h"
#include "genhdr/pins.h"

#define DEFAULT_BPM      120
#define DEFAULT_TICKS    4 // i.e. 4 ticks per beat
#define DEFAULT_OCTAVE   4 // C4 is middle C
#define DEFAULT_DURATION 4 // Crotchet
#define ARTICULATION_MS  10 // articulation between notes in milliseconds

typedef struct _music_data_t {
    uint16_t bpm;
    uint16_t ticks;

    // store these to simplify the writing process
    uint8_t last_octave;
    uint8_t last_duration;

    // Asynchronous parts.
    volatile uint8_t async_state;
    bool async_loop;
    uint32_t async_wait_ticks;
    uint16_t async_notes_len;
    uint16_t async_notes_index;
    const pin_obj_t *async_pin;
    mp_obj_t async_note;
} music_data_t;

enum {
    ASYNC_MUSIC_STATE_IDLE,
    ASYNC_MUSIC_STATE_NEXT_NOTE,
    ASYNC_MUSIC_STATE_ARTICULATE,
};

#define music_data MP_STATE_PORT(music_data)

extern volatile uint32_t ticks;

STATIC uint32_t start_note(const char *note_str, size_t note_len, const pin_obj_t *pin);

void microbit_music_init0(void) {
    softpwm_init();
    ticker_init(microbit_music_tick);
    ticker_start();
    pwm_start();
}

void microbit_music_tick(void) {
    if (music_data == NULL) {
        // music module not yet imported
        return;
    }

    if (music_data->async_state == ASYNC_MUSIC_STATE_IDLE) {
        // nothing to do
        return;
    }

    if (ticks < music_data->async_wait_ticks) {
        // need to wait for timeout to expire
        return;
    }

    if (music_data->async_state == ASYNC_MUSIC_STATE_ARTICULATE) {
        // turn off output and rest
        pwm_set_duty_cycle(music_data->async_pin->pin, 0); // TODO: remove pin setting.
        music_data->async_wait_ticks = ticks + ARTICULATION_MS;
        music_data->async_state = ASYNC_MUSIC_STATE_NEXT_NOTE;
    } else if (music_data->async_state == ASYNC_MUSIC_STATE_NEXT_NOTE) {
        // play next note
        if (music_data->async_notes_index >= music_data->async_notes_len) {
            if (music_data->async_loop) {
                music_data->async_notes_index = 0;
            } else {
                music_data->async_state = ASYNC_MUSIC_STATE_IDLE;
// TODO:        microbit_obj_pin_free(music_data->async_pin);
                music_data->async_pin = NULL;
                return;
            }
        }
        mp_obj_t note;
        if (music_data->async_notes_len == 1) {
            note = music_data->async_note;
        } else {
            note = ((mp_obj_t*)music_data->async_note)[music_data->async_notes_index];
        }
        if (note == mp_const_none) {
            // a rest (is this even used anymore?)
            pwm_set_duty_cycle(music_data->async_pin->pin, 0); // TODO: remove pin setting.
            music_data->async_wait_ticks = 60000 / music_data->bpm;
            music_data->async_state = ASYNC_MUSIC_STATE_NEXT_NOTE;
        } else {
            // a note
            mp_uint_t note_len;
            const char *note_str = mp_obj_str_get_data(note, &note_len);
            uint32_t delay_on = start_note(note_str, note_len, music_data->async_pin);
            music_data->async_wait_ticks = ticks + delay_on;
            music_data->async_notes_index += 1;
            music_data->async_state = ASYNC_MUSIC_STATE_ARTICULATE;
        }
    }
}

STATIC void wait_async_music_idle(void) {
    // wait for the async music state to become idle
    while (music_data->async_state != ASYNC_MUSIC_STATE_IDLE) {
        // allow CTRL-C to stop the music
        if (MP_STATE_VM(mp_pending_exception) != MP_OBJ_NULL) {
            music_data->async_state = ASYNC_MUSIC_STATE_IDLE;
            pwm_set_duty_cycle(music_data->async_pin->pin, 0); // TODO: remove pin setting.
            break;
        }
    }
}

STATIC uint32_t start_note(const char *note_str, size_t note_len, const pin_obj_t *pin) {
    pwm_set_duty_cycle(pin->pin, 128); // TODO: remove pin setting.

    // [NOTE](#|b)(octave)(:length)
    // technically, c4 is middle c, so we'll go with that...
    // if we define A as 0 and G as 7, then we can use the following
    // array of us periods

    // these are the periods of note4 (the octave ascending from middle c) from A->B then C->G
    STATIC uint16_t periods_us[] = {2273, 2025, 3822, 3405, 3034, 2863, 2551};
    // A#, -, C#, D#, -, F#, G#
    STATIC uint16_t periods_sharps_us[] = {2145, 0, 3608, 3214, 0, 2703, 2408};

    // we'll represent the note as an integer (A=0, G=6)
    // TODO: validate the note
    uint8_t note_index = (note_str[0] & 0x1f) - 1;

    // TODO: the duration and bpm should be persistent between notes
    uint32_t ms_per_tick = (60000 / music_data->bpm) / music_data->ticks;

    int8_t octave = 0;
    bool sharp = false;

    size_t current_position = 1;

    // parse sharp or flat
    if (current_position < note_len && (note_str[current_position] == '#' || note_str[current_position] == 'b')) {
        if (note_str[current_position] == 'b') {
            // make sure we handle wrapping round gracefully
            if (note_index == 0) {
                note_index = 6;
            } else {
                note_index--;
            }

            // handle the unusual edge case of Cb
            if (note_index == 1) {
                octave--;
            }
        }

        sharp = true;
        current_position++;
    }

    // parse the octave
    if (current_position < note_len && note_str[current_position] != ':') {
        // currently this will only work with a one digit number
        // use +=, since the sharp/flat code changes octave to compensate.
        music_data->last_octave = (note_str[current_position] & 0xf);
        current_position++;
    }

    octave += music_data->last_octave;

    // parse the duration
    if (current_position < note_len && note_str[current_position] == ':') {
        // I'll make this handle up to two digits for the time being.
        current_position++;

        if (current_position < note_len) {
            music_data->last_duration = note_str[current_position] & 0xf;

            current_position++;
            if (current_position < note_len) {
                music_data->last_duration *= 10;
                music_data->last_duration += note_str[current_position] & 0xf;
            }
        } else {
            // technically, this should be a syntax error, since this means
            // that no duration has been specified. For the time being,
            // we'll let you off :D
        }
    }
    // play the note!

    // make the octave relative to octave 4
    octave -= 4;

    // 18 is 'r' or 'R'
    if (note_index < 10) {
        uint32_t period;
        if (sharp) {
            if (octave >= 0) {
                period = periods_sharps_us[note_index] >> octave;
            }
            else {
                period = periods_sharps_us[note_index] << -octave;
            }
        } else {
            if (octave >= 0) {
                period = periods_us[note_index] >> octave;
            }
            else {
                period = periods_us[note_index] << -octave;
            }
        }
        pwm_set_period_us(period);
    } else {
        pwm_set_duty_cycle(pin->pin, 0); // TODO: remove pin setting.
    }

    // Cut off a short time from end of note so we hear articulation.
    mp_int_t gap_ms = (ms_per_tick * music_data->last_duration) - ARTICULATION_MS;
    if (gap_ms < ARTICULATION_MS) {
        gap_ms = ARTICULATION_MS;
    }
    return gap_ms;
}

STATIC mp_obj_t microbit_music_reset(void) {
    music_data->bpm = DEFAULT_BPM;
    music_data->ticks = DEFAULT_TICKS;
    music_data->last_octave = DEFAULT_OCTAVE;
    music_data->last_duration = DEFAULT_DURATION;

    return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_0(microbit_music_reset_obj, microbit_music_reset);

STATIC mp_obj_t microbit_music_get_tempo(void) {
    mp_obj_t tempo_tuple[2];

    tempo_tuple[0] = mp_obj_new_int(music_data->bpm);
    tempo_tuple[1] = mp_obj_new_int(music_data->ticks);

    return mp_obj_new_tuple(2, tempo_tuple);
}
MP_DEFINE_CONST_FUN_OBJ_0(microbit_music_get_tempo_obj, microbit_music_get_tempo);

STATIC mp_obj_t microbit_music_stop(mp_uint_t n_args, const mp_obj_t *args) {
    const pin_obj_t *pin;
    if (n_args == 0) {
#ifdef MICROPY_HW_MUSIC_PIN
        pin = &MICROPY_HW_MUSIC_PIN;
#else
        mp_raise_ValueError("pin parameter not given");
#endif
    } else {
        pin = (pin_obj_t *)args[0];
    }
    (void)pin;
    // Raise exception if the pin we are trying to stop is not in a compatible mode.
// TODO: microbit_obj_pin_acquire(pin, microbit_pin_mode_music);
    pwm_set_duty_cycle(pin->pin, 0); // TODO: remove pin setting.
// TODO: microbit_obj_pin_free(pin);
    music_data->async_pin = NULL;
    music_data->async_state = ASYNC_MUSIC_STATE_IDLE;

    return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(microbit_music_stop_obj, 0, 1, microbit_music_stop);

STATIC mp_obj_t microbit_music_play(mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
    static const mp_arg_t allowed_args[] = {
        { MP_QSTR_music, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
        { MP_QSTR_pin,   MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
        { MP_QSTR_wait,  MP_ARG_BOOL, {.u_bool = true} },
        { MP_QSTR_loop,  MP_ARG_BOOL, {.u_bool = false} },
    };

    // parse args
    mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
    mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);

    // reset octave and duration so tunes always play the same
    music_data->last_octave = DEFAULT_OCTAVE;
    music_data->last_duration = DEFAULT_DURATION;

    // get either a single note or a list of notes
    mp_uint_t len;
    mp_obj_t *items;
    if (MP_OBJ_IS_STR_OR_BYTES(args[0].u_obj)) {
        len = 1;
        items = &args[0].u_obj;
    } else {
        mp_obj_get_array(args[0].u_obj, &len, &items);
    }

    // Release the previous pin
// TODO: microbit_obj_pin_free(music_data->async_pin);
    music_data->async_pin = NULL;

    // get the pin to play on
    const pin_obj_t *pin;
    if (args[1].u_obj == MP_OBJ_NULL) {
#ifdef MICROPY_HW_MUSIC_PIN
        pin = &MICROPY_HW_MUSIC_PIN;
#else
        mp_raise_ValueError("pin parameter not given");
#endif
    } else {
        pin = (pin_obj_t *)args[1].u_obj;
    }
    // TODO: microbit_obj_pin_acquire(pin, microbit_pin_mode_music);

    // start the tune running in the background
    music_data->async_state = ASYNC_MUSIC_STATE_IDLE;
    music_data->async_wait_ticks = ticks;
    music_data->async_loop = args[3].u_bool;
    music_data->async_notes_len = len;
    music_data->async_notes_index = 0;
    if (len == 1) {
        // If a string was passed as a single note then we can't store a pointer
        // to args[0].u_obj, so instead store the single string directly (also
        // works if a tuple/list of one element was passed).
        music_data->async_note = items[0];
    } else {
        music_data->async_note = items;
    }
    music_data->async_pin = pin;
    music_data->async_state = ASYNC_MUSIC_STATE_NEXT_NOTE;

    if (args[2].u_bool) {
        // wait for tune to finish
        wait_async_music_idle();
    }

    return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_KW(microbit_music_play_obj, 0, microbit_music_play);

STATIC mp_obj_t microbit_music_pitch(mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
    static const mp_arg_t allowed_args[] = {
        { MP_QSTR_frequency, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 0} },
        { MP_QSTR_duration, MP_ARG_INT, {.u_int = -1} },
        { MP_QSTR_pin,    MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
        { MP_QSTR_wait,   MP_ARG_BOOL, {.u_bool = true} },
    };

    // parse args
    mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
    mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);

    // get the parameters
    mp_uint_t frequency = args[0].u_int;
    mp_int_t duration = args[1].u_int;

    // get the pin to play on
    const pin_obj_t *pin;
    if (args[2].u_obj == MP_OBJ_NULL) {
#ifdef MICROPY_HW_MUSIC_PIN
        pin = &MICROPY_HW_MUSIC_PIN;
#else
        mp_raise_ValueError("pin parameter not given");
#endif
    } else {
        pin = (pin_obj_t *)args[2].u_obj;
    }

    // Update pin modes
//TODO: microbit_obj_pin_free(music_data->async_pin);
    music_data->async_pin = NULL;
//TODO: microbit_obj_pin_acquire(pin, microbit_pin_mode_music);
    bool wait = args[3].u_bool;
    pwm_set_duty_cycle(pin->pin, 128); // TODO: remove pin setting.
    if (frequency == 0) {
//TODO: pwm_release(pin->name);
    } else if (pwm_set_period_us(1000000/frequency)) {
        pwm_release(pin->pin); // TODO: remove pin setting.
        mp_raise_ValueError("invalid pitch");
    }
    if (duration >= 0) {
        // use async machinery to stop the pitch after the duration
        music_data->async_state = ASYNC_MUSIC_STATE_IDLE;
        music_data->async_wait_ticks = ticks + duration;
        music_data->async_loop = false;
        music_data->async_notes_len = 0;
        music_data->async_notes_index = 0;
        music_data->async_note = NULL;
        music_data->async_pin = pin;
        music_data->async_state = ASYNC_MUSIC_STATE_ARTICULATE;

        if (wait) {
            // wait for the pitch to finish
            wait_async_music_idle();
        }
    } else {
        // don't block here, since there's no reason to leave a pitch forever in a blocking C function
    }

    return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_KW(microbit_music_pitch_obj, 0, microbit_music_pitch);

STATIC mp_obj_t microbit_music_set_tempo(mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
    static const mp_arg_t allowed_args[] = {
        { MP_QSTR_ticks, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
        { MP_QSTR_bpm,   MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
    };

    mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
    mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);

    if (args[0].u_int != 0) {
        // set ticks
        music_data->ticks = args[0].u_int;
    }

    if (args[1].u_int != 0) {
        music_data->bpm = args[1].u_int;
    }

    return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_KW(microbit_music_set_tempo_obj, 0, microbit_music_set_tempo);


static mp_obj_t music_init(void) {
    microbit_music_init0();

    music_data = m_new_obj(music_data_t);
    music_data->bpm = DEFAULT_BPM;
    music_data->ticks = DEFAULT_TICKS;
    music_data->last_octave = DEFAULT_OCTAVE;
    music_data->last_duration = DEFAULT_DURATION;
    music_data->async_state = ASYNC_MUSIC_STATE_IDLE;
    music_data->async_pin = NULL;
    music_data->async_note = NULL;
    return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_0(music___init___obj, music_init);

STATIC const mp_rom_map_elem_t microbit_music_locals_dict_table[] = {
    { MP_ROM_QSTR(MP_QSTR___init__), MP_ROM_PTR(&music___init___obj) },

    { MP_ROM_QSTR(MP_QSTR_reset), MP_ROM_PTR(&microbit_music_reset_obj) },
    { MP_ROM_QSTR(MP_QSTR_set_tempo), MP_ROM_PTR(&microbit_music_set_tempo_obj) },
    { MP_ROM_QSTR(MP_QSTR_get_tempo), MP_ROM_PTR(&microbit_music_get_tempo_obj) },
    { MP_ROM_QSTR(MP_QSTR_play), MP_ROM_PTR(&microbit_music_play_obj) },
    { MP_ROM_QSTR(MP_QSTR_pitch), MP_ROM_PTR(&microbit_music_pitch_obj) },
    { MP_ROM_QSTR(MP_QSTR_stop), MP_ROM_PTR(&microbit_music_stop_obj) },

    { MP_ROM_QSTR(MP_QSTR_DADADADUM), MP_ROM_PTR(&microbit_music_tune_dadadadum_obj) },
    { MP_ROM_QSTR(MP_QSTR_ENTERTAINER), MP_ROM_PTR(&microbit_music_tune_entertainer_obj) },
    { MP_ROM_QSTR(MP_QSTR_PRELUDE), MP_ROM_PTR(&microbit_music_tune_prelude_obj) },
    { MP_ROM_QSTR(MP_QSTR_ODE), MP_ROM_PTR(&microbit_music_tune_ode_obj) },
    { MP_ROM_QSTR(MP_QSTR_NYAN), MP_ROM_PTR(&microbit_music_tune_nyan_obj) },
    { MP_ROM_QSTR(MP_QSTR_RINGTONE), MP_ROM_PTR(&microbit_music_tune_ringtone_obj) },
    { MP_ROM_QSTR(MP_QSTR_FUNK), MP_ROM_PTR(&microbit_music_tune_funk_obj) },
    { MP_ROM_QSTR(MP_QSTR_BLUES), MP_ROM_PTR(&microbit_music_tune_blues_obj) },
    { MP_ROM_QSTR(MP_QSTR_BIRTHDAY), MP_ROM_PTR(&microbit_music_tune_birthday_obj) },
    { MP_ROM_QSTR(MP_QSTR_WEDDING), MP_ROM_PTR(&microbit_music_tune_wedding_obj) },
    { MP_ROM_QSTR(MP_QSTR_FUNERAL), MP_ROM_PTR(&microbit_music_tune_funeral_obj) },
    { MP_ROM_QSTR(MP_QSTR_PUNCHLINE), MP_ROM_PTR(&microbit_music_tune_punchline_obj) },
    { MP_ROM_QSTR(MP_QSTR_PYTHON), MP_ROM_PTR(&microbit_music_tune_python_obj) },
    { MP_ROM_QSTR(MP_QSTR_BADDY), MP_ROM_PTR(&microbit_music_tune_baddy_obj) },
    { MP_ROM_QSTR(MP_QSTR_CHASE), MP_ROM_PTR(&microbit_music_tune_chase_obj) },
    { MP_ROM_QSTR(MP_QSTR_BA_DING), MP_ROM_PTR(&microbit_music_tune_ba_ding_obj) },
    { MP_ROM_QSTR(MP_QSTR_WAWAWAWAA), MP_ROM_PTR(&microbit_music_tune_wawawawaa_obj) },
    { MP_ROM_QSTR(MP_QSTR_JUMP_UP), MP_ROM_PTR(&microbit_music_tune_jump_up_obj) },
    { MP_ROM_QSTR(MP_QSTR_JUMP_DOWN), MP_ROM_PTR(&microbit_music_tune_jump_down_obj) },
    { MP_ROM_QSTR(MP_QSTR_POWER_UP), MP_ROM_PTR(&microbit_music_tune_power_up_obj) },
    { MP_ROM_QSTR(MP_QSTR_POWER_DOWN), MP_ROM_PTR(&microbit_music_tune_power_down_obj) },
};

STATIC MP_DEFINE_CONST_DICT(microbit_music_locals_dict, microbit_music_locals_dict_table);

const mp_obj_module_t music_module = {
    .base = { &mp_type_module },
    .globals = (mp_obj_dict_t*)&microbit_music_locals_dict,
};

#endif // MICROPY_PY_MUSIC