CircuitPython

Source code browser

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
/*
 * This file is part of the MicroPython project, http://micropython.org/
 *
 * The MIT License (MIT)
 *
 * Copyright (c) 2013, 2014 Damien P. George
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

#include <stdio.h>
#include <string.h>

#include "py/runtime.h"
#include "py/mphal.h"
#include "irq.h"
#include "pin.h"
#include "genhdr/pins.h"
#include "bufhelper.h"
#include "dma.h"
#include "i2c.h"

/// \moduleref pyb
/// \class I2C - a two-wire serial protocol
///
/// I2C is a two-wire protocol for communicating between devices.  At the physical
/// level it consists of 2 wires: SCL and SDA, the clock and data lines respectively.
///
/// I2C objects are created attached to a specific bus.  They can be initialised
/// when created, or initialised later on:
///
///     from pyb import I2C
///
///     i2c = I2C(1)                         # create on bus 1
///     i2c = I2C(1, I2C.MASTER)             # create and init as a master
///     i2c.init(I2C.MASTER, baudrate=20000) # init as a master
///     i2c.init(I2C.SLAVE, addr=0x42)       # init as a slave with given address
///     i2c.deinit()                         # turn off the peripheral
///
/// Printing the i2c object gives you information about its configuration.
///
/// Basic methods for slave are send and recv:
///
///     i2c.send('abc')      # send 3 bytes
///     i2c.send(0x42)       # send a single byte, given by the number
///     data = i2c.recv(3)   # receive 3 bytes
///
/// To receive inplace, first create a bytearray:
///
///     data = bytearray(3)  # create a buffer
///     i2c.recv(data)       # receive 3 bytes, writing them into data
///
/// You can specify a timeout (in ms):
///
///     i2c.send(b'123', timeout=2000)   # timout after 2 seconds
///
/// A master must specify the recipient's address:
///
///     i2c.init(I2C.MASTER)
///     i2c.send('123', 0x42)        # send 3 bytes to slave with address 0x42
///     i2c.send(b'456', addr=0x42)  # keyword for address
///
/// Master also has other methods:
///
///     i2c.is_ready(0x42)           # check if slave 0x42 is ready
///     i2c.scan()                   # scan for slaves on the bus, returning
///                                  #   a list of valid addresses
///     i2c.mem_read(3, 0x42, 2)     # read 3 bytes from memory of slave 0x42,
///                                  #   starting at address 2 in the slave
///     i2c.mem_write('abc', 0x42, 2, timeout=1000)
#define PYB_I2C_MASTER (0)
#define PYB_I2C_SLAVE  (1)

#if defined(MICROPY_HW_I2C1_SCL)
I2C_HandleTypeDef I2CHandle1 = {.Instance = NULL};
#endif
#if defined(MICROPY_HW_I2C2_SCL)
I2C_HandleTypeDef I2CHandle2 = {.Instance = NULL};
#endif
#if defined(MICROPY_HW_I2C3_SCL)
I2C_HandleTypeDef I2CHandle3 = {.Instance = NULL};
#endif
#if defined(MICROPY_HW_I2C4_SCL)
I2C_HandleTypeDef I2CHandle4 = {.Instance = NULL};
#endif

STATIC bool pyb_i2c_use_dma[4];

const pyb_i2c_obj_t pyb_i2c_obj[] = {
    #if defined(MICROPY_HW_I2C1_SCL)
    {{&pyb_i2c_type}, &I2CHandle1, &dma_I2C_1_TX, &dma_I2C_1_RX, &pyb_i2c_use_dma[0]},
    #else
    {{&pyb_i2c_type}, NULL, NULL, NULL, NULL},
    #endif
    #if defined(MICROPY_HW_I2C2_SCL)
    {{&pyb_i2c_type}, &I2CHandle2, &dma_I2C_2_TX, &dma_I2C_2_RX, &pyb_i2c_use_dma[1]},
    #else
    {{&pyb_i2c_type}, NULL, NULL, NULL, NULL},
    #endif
    #if defined(MICROPY_HW_I2C3_SCL)
    {{&pyb_i2c_type}, &I2CHandle3, &dma_I2C_3_TX, &dma_I2C_3_RX, &pyb_i2c_use_dma[2]},
    #else
    {{&pyb_i2c_type}, NULL, NULL, NULL, NULL},
    #endif
    #if defined(MICROPY_HW_I2C4_SCL)
    {{&pyb_i2c_type}, &I2CHandle4, &dma_I2C_4_TX, &dma_I2C_4_RX, &pyb_i2c_use_dma[3]},
    #else
    {{&pyb_i2c_type}, NULL, NULL, NULL, NULL},
    #endif
};

#if defined(MCU_SERIES_F7) || defined(MCU_SERIES_L4)

// The STM32F0, F3, F7 and L4 use a TIMINGR register rather than ClockSpeed and
// DutyCycle.

#if defined(STM32F746xx)

// The value 0x40912732 was obtained from the DISCOVERY_I2Cx_TIMING constant
// defined in the STM32F7Cube file Drivers/BSP/STM32F746G-Discovery/stm32f7456g_discovery.h
#define MICROPY_HW_I2C_BAUDRATE_TIMING {{100000, 0x40912732}}
#define MICROPY_HW_I2C_BAUDRATE_DEFAULT (100000)
#define MICROPY_HW_I2C_BAUDRATE_MAX (100000)

#elif defined(STM32F767xx) || defined(STM32F769xx)

// These timing values are for f_I2CCLK=54MHz and are only approximate
#define MICROPY_HW_I2C_BAUDRATE_TIMING { \
        {100000, 0xb0420f13}, \
        {400000, 0x70330309}, \
        {1000000, 0x50100103}, \
    }
#define MICROPY_HW_I2C_BAUDRATE_DEFAULT (400000)
#define MICROPY_HW_I2C_BAUDRATE_MAX (1000000)

#elif defined(MCU_SERIES_L4)

// The value 0x90112626 was obtained from the DISCOVERY_I2C1_TIMING constant
// defined in the STM32L4Cube file Drivers/BSP/STM32L476G-Discovery/stm32l476g_discovery.h
#define MICROPY_HW_I2C_BAUDRATE_TIMING {{100000, 0x90112626}}
#define MICROPY_HW_I2C_BAUDRATE_DEFAULT (100000)
#define MICROPY_HW_I2C_BAUDRATE_MAX (100000)

#else
#error "no I2C timings for this MCU"
#endif

STATIC const struct {
    uint32_t    baudrate;
    uint32_t    timing;
} pyb_i2c_baudrate_timing[] = MICROPY_HW_I2C_BAUDRATE_TIMING;

#define NUM_BAUDRATE_TIMINGS MP_ARRAY_SIZE(pyb_i2c_baudrate_timing)

STATIC void i2c_set_baudrate(I2C_InitTypeDef *init, uint32_t baudrate) {
    for (int i = 0; i < NUM_BAUDRATE_TIMINGS; i++) {
        if (pyb_i2c_baudrate_timing[i].baudrate == baudrate) {
            init->Timing = pyb_i2c_baudrate_timing[i].timing;
            return;
        }
    }
    nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError,
                                            "Unsupported I2C baudrate: %lu", baudrate));
}

uint32_t i2c_get_baudrate(I2C_InitTypeDef *init) {
    for (int i = 0; i < NUM_BAUDRATE_TIMINGS; i++) {
        if (pyb_i2c_baudrate_timing[i].timing == init->Timing) {
            return pyb_i2c_baudrate_timing[i].baudrate;
        }
    }
    return 0;
}

#else

#define MICROPY_HW_I2C_BAUDRATE_DEFAULT (400000)
#define MICROPY_HW_I2C_BAUDRATE_MAX (400000)

STATIC void i2c_set_baudrate(I2C_InitTypeDef *init, uint32_t baudrate) {
    init->ClockSpeed = baudrate;
    init->DutyCycle = I2C_DUTYCYCLE_16_9;
}

uint32_t i2c_get_baudrate(I2C_InitTypeDef *init) {
    return init->ClockSpeed;
}

#endif

void i2c_init0(void) {
    // reset the I2C1 handles
    #if defined(MICROPY_HW_I2C1_SCL)
    memset(&I2CHandle1, 0, sizeof(I2C_HandleTypeDef));
    I2CHandle1.Instance = I2C1;
    #endif
    #if defined(MICROPY_HW_I2C2_SCL)
    memset(&I2CHandle2, 0, sizeof(I2C_HandleTypeDef));
    I2CHandle2.Instance = I2C2;
    #endif
    #if defined(MICROPY_HW_I2C3_SCL)
    memset(&I2CHandle3, 0, sizeof(I2C_HandleTypeDef));
    I2CHandle3.Instance = I2C3;
    #endif
    #if defined(MICROPY_HW_I2C4_SCL)
    memset(&I2CHandle4, 0, sizeof(I2C_HandleTypeDef));
    I2CHandle3.Instance = I2C4;
    #endif
}

void i2c_init(I2C_HandleTypeDef *i2c) {
    int i2c_unit;
    const pin_obj_t *scl_pin;
    const pin_obj_t *sda_pin;

    if (0) {
    #if defined(MICROPY_HW_I2C1_SCL)
    } else if (i2c == &I2CHandle1) {
        i2c_unit = 1;
        scl_pin = &MICROPY_HW_I2C1_SCL;
        sda_pin = &MICROPY_HW_I2C1_SDA;
        __I2C1_CLK_ENABLE();
    #endif
    #if defined(MICROPY_HW_I2C2_SCL)
    } else if (i2c == &I2CHandle2) {
        i2c_unit = 2;
        scl_pin = &MICROPY_HW_I2C2_SCL;
        sda_pin = &MICROPY_HW_I2C2_SDA;
        __I2C2_CLK_ENABLE();
    #endif
    #if defined(MICROPY_HW_I2C3_SCL)
    } else if (i2c == &I2CHandle3) {
        i2c_unit = 3;
        scl_pin = &MICROPY_HW_I2C3_SCL;
        sda_pin = &MICROPY_HW_I2C3_SDA;
        __I2C3_CLK_ENABLE();
    #endif
    #if defined(MICROPY_HW_I2C4_SCL)
    } else if (i2c == &I2CHandle4) {
        i2c_unit = 4;
        scl_pin = &MICROPY_HW_I2C4_SCL;
        sda_pin = &MICROPY_HW_I2C4_SDA;
        __I2C3_CLK_ENABLE();
    #endif
    } else {
        // I2C does not exist for this board (shouldn't get here, should be checked by caller)
        return;
    }

    // init the GPIO lines
    uint32_t mode = MP_HAL_PIN_MODE_ALT_OPEN_DRAIN;
    uint32_t pull = MP_HAL_PIN_PULL_NONE; // have external pull-up resistors on both lines
    mp_hal_pin_config_alt(scl_pin, mode, pull, AF_FN_I2C, i2c_unit);
    mp_hal_pin_config_alt(sda_pin, mode, pull, AF_FN_I2C, i2c_unit);

    // init the I2C device
    if (HAL_I2C_Init(i2c) != HAL_OK) {
        // init error
        // TODO should raise an exception, but this function is not necessarily going to be
        // called via Python, so may not be properly wrapped in an NLR handler
        printf("OSError: HAL_I2C_Init failed\n");
        return;
    }

    // invalidate the DMA channels so they are initialised on first use
    const pyb_i2c_obj_t *self = &pyb_i2c_obj[i2c_unit - 1];
    dma_invalidate_channel(self->tx_dma_descr);
    dma_invalidate_channel(self->rx_dma_descr);

    if (0) {
    #if defined(MICROPY_HW_I2C1_SCL)
    } else if (i2c->Instance == I2C1) {
        HAL_NVIC_EnableIRQ(I2C1_EV_IRQn);
        HAL_NVIC_EnableIRQ(I2C1_ER_IRQn);
    #endif
    #if defined(MICROPY_HW_I2C2_SCL)
    } else if (i2c->Instance == I2C2) {
        HAL_NVIC_EnableIRQ(I2C2_EV_IRQn);
        HAL_NVIC_EnableIRQ(I2C2_ER_IRQn);
    #endif
    #if defined(MICROPY_HW_I2C3_SCL)
    } else if (i2c->Instance == I2C3) {
        HAL_NVIC_EnableIRQ(I2C3_EV_IRQn);
        HAL_NVIC_EnableIRQ(I2C3_ER_IRQn);
    #endif
    #if defined(MICROPY_HW_I2C4_SCL)
    } else if (i2c->Instance == I2C4) {
        HAL_NVIC_EnableIRQ(I2C4_EV_IRQn);
        HAL_NVIC_EnableIRQ(I2C4_ER_IRQn);
    #endif
    }
}

void i2c_deinit(I2C_HandleTypeDef *i2c) {
    HAL_I2C_DeInit(i2c);
    if (0) {
    #if defined(MICROPY_HW_I2C1_SCL)
    } else if (i2c->Instance == I2C1) {
        __I2C1_FORCE_RESET();
        __I2C1_RELEASE_RESET();
        __I2C1_CLK_DISABLE();
        HAL_NVIC_DisableIRQ(I2C1_EV_IRQn);
        HAL_NVIC_DisableIRQ(I2C1_ER_IRQn);
    #endif
    #if defined(MICROPY_HW_I2C2_SCL)
    } else if (i2c->Instance == I2C2) {
        __I2C2_FORCE_RESET();
        __I2C2_RELEASE_RESET();
        __I2C2_CLK_DISABLE();
        HAL_NVIC_DisableIRQ(I2C2_EV_IRQn);
        HAL_NVIC_DisableIRQ(I2C2_ER_IRQn);
    #endif
    #if defined(MICROPY_HW_I2C3_SCL)
    } else if (i2c->Instance == I2C3) {
        __I2C3_FORCE_RESET();
        __I2C3_RELEASE_RESET();
        __I2C3_CLK_DISABLE();
        HAL_NVIC_DisableIRQ(I2C3_EV_IRQn);
        HAL_NVIC_DisableIRQ(I2C3_ER_IRQn);
    #endif
    #if defined(MICROPY_HW_I2C4_SCL)
    } else if (i2c->Instance == I2C4) {
        __HAL_RCC_I2C4_FORCE_RESET();
        __HAL_RCC_I2C4_RELEASE_RESET();
        __HAL_RCC_I2C4_CLK_DISABLE();
        HAL_NVIC_DisableIRQ(I2C4_EV_IRQn);
        HAL_NVIC_DisableIRQ(I2C4_ER_IRQn);
    #endif
    }
}

void i2c_init_freq(const pyb_i2c_obj_t *self, mp_int_t freq) {
    I2C_InitTypeDef *init = &self->i2c->Init;

    init->AddressingMode    = I2C_ADDRESSINGMODE_7BIT;
    init->DualAddressMode   = I2C_DUALADDRESS_DISABLED;
    init->GeneralCallMode   = I2C_GENERALCALL_DISABLED;
    init->NoStretchMode     = I2C_NOSTRETCH_DISABLE;
    init->OwnAddress1       = PYB_I2C_MASTER_ADDRESS;
    init->OwnAddress2       = 0; // unused
    if (freq != -1) {
        i2c_set_baudrate(init, MIN(freq, MICROPY_HW_I2C_BAUDRATE_MAX));
    }

    *self->use_dma = false;

    // init the I2C bus
    i2c_deinit(self->i2c);
    i2c_init(self->i2c);
}

STATIC void i2c_reset_after_error(I2C_HandleTypeDef *i2c) {
    // wait for bus-busy flag to be cleared, with a timeout
    for (int timeout = 50; timeout > 0; --timeout) {
        if (!__HAL_I2C_GET_FLAG(i2c, I2C_FLAG_BUSY)) {
            // stop bit was generated and bus is back to normal
            return;
        }
        mp_hal_delay_ms(1);
    }
    // bus was/is busy, need to reset the peripheral to get it to work again
    i2c_deinit(i2c);
    i2c_init(i2c);
}

void i2c_ev_irq_handler(mp_uint_t i2c_id) {
    I2C_HandleTypeDef *hi2c;

    switch (i2c_id) {
        #if defined(MICROPY_HW_I2C1_SCL)
        case 1:
            hi2c = &I2CHandle1;
            break;
        #endif
        #if defined(MICROPY_HW_I2C2_SCL)
        case 2:
            hi2c = &I2CHandle2;
            break;
        #endif
        #if defined(MICROPY_HW_I2C3_SCL)
        case 3:
            hi2c = &I2CHandle3;
            break;
        #endif
        #if defined(MICROPY_HW_I2C4_SCL)
        case 4:
            hi2c = &I2CHandle4;
            break;
        #endif
        default:
            return;
    }

    #if defined(MCU_SERIES_F4)

    if (hi2c->Instance->SR1 & I2C_FLAG_BTF && hi2c->State == HAL_I2C_STATE_BUSY_TX) {
        if (hi2c->XferCount != 0U) {
            hi2c->Instance->DR = *hi2c->pBuffPtr++;
            hi2c->XferCount--;
        } else {
            __HAL_I2C_DISABLE_IT(hi2c, I2C_IT_EVT | I2C_IT_BUF | I2C_IT_ERR);
            if (hi2c->XferOptions != I2C_FIRST_FRAME) {
                hi2c->Instance->CR1 |= I2C_CR1_STOP;
            }
            hi2c->Mode = HAL_I2C_MODE_NONE;
            hi2c->State = HAL_I2C_STATE_READY;
        }
    }

    #else

    // if not an F4 MCU, use the HAL's IRQ handler
    HAL_I2C_EV_IRQHandler(hi2c);

    #endif
}

void i2c_er_irq_handler(mp_uint_t i2c_id) {
    I2C_HandleTypeDef *hi2c;

    switch (i2c_id) {
        #if defined(MICROPY_HW_I2C1_SCL)
        case 1:
            hi2c = &I2CHandle1;
            break;
        #endif
        #if defined(MICROPY_HW_I2C2_SCL)
        case 2:
            hi2c = &I2CHandle2;
            break;
        #endif
        #if defined(MICROPY_HW_I2C3_SCL)
        case 3:
            hi2c = &I2CHandle3;
            break;
        #endif
        #if defined(MICROPY_HW_I2C4_SCL)
        case 4:
            hi2c = &I2CHandle4;
            break;
        #endif
        default:
            return;
    }

    #if defined(MCU_SERIES_F4)

    uint32_t sr1 = hi2c->Instance->SR1;

    // I2C Bus error
    if (sr1 & I2C_FLAG_BERR) {
        hi2c->ErrorCode |= HAL_I2C_ERROR_BERR;
        __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_BERR);
    }

    // I2C Arbitration Loss error
    if (sr1 & I2C_FLAG_ARLO) {
        hi2c->ErrorCode |= HAL_I2C_ERROR_ARLO;
        __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_ARLO);
    }

    // I2C Acknowledge failure
    if (sr1 & I2C_FLAG_AF) {
        hi2c->ErrorCode |= HAL_I2C_ERROR_AF;
        SET_BIT(hi2c->Instance->CR1,I2C_CR1_STOP);
        __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_AF);
    }

    // I2C Over-Run/Under-Run
    if (sr1 & I2C_FLAG_OVR) {
        hi2c->ErrorCode |= HAL_I2C_ERROR_OVR;
        __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_OVR);
    }

    #else

    // if not an F4 MCU, use the HAL's IRQ handler
    HAL_I2C_ER_IRQHandler(hi2c);

    #endif
}

STATIC HAL_StatusTypeDef i2c_wait_dma_finished(I2C_HandleTypeDef *i2c, uint32_t timeout) {
    // Note: we can't use WFI to idle in this loop because the DMA completion
    // interrupt may occur before the WFI.  Hence we miss it and have to wait
    // until the next sys-tick (up to 1ms).
    uint32_t start = HAL_GetTick();
    while (HAL_I2C_GetState(i2c) != HAL_I2C_STATE_READY) {
        if (HAL_GetTick() - start >= timeout) {
            return HAL_TIMEOUT;
        }
    }
    return HAL_OK;
}

/******************************************************************************/
/* MicroPython bindings                                                       */

static inline bool in_master_mode(pyb_i2c_obj_t *self) { return self->i2c->Init.OwnAddress1 == PYB_I2C_MASTER_ADDRESS; }

STATIC void pyb_i2c_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
    pyb_i2c_obj_t *self = self_in;

    uint i2c_num = 0;
    if (0) { }
    #if defined(MICROPY_HW_I2C1_SCL)
    else if (self->i2c->Instance == I2C1) { i2c_num = 1; }
    #endif
    #if defined(MICROPY_HW_I2C2_SCL)
    else if (self->i2c->Instance == I2C2) { i2c_num = 2; }
    #endif
    #if defined(MICROPY_HW_I2C3_SCL)
    else if (self->i2c->Instance == I2C3) { i2c_num = 3; }
    #endif
    #if defined(MICROPY_HW_I2C4_SCL)
    else if (self->i2c->Instance == I2C4) { i2c_num = 4; }
    #endif

    if (self->i2c->State == HAL_I2C_STATE_RESET) {
        mp_printf(print, "I2C(%u)", i2c_num);
    } else {
        if (in_master_mode(self)) {
            mp_printf(print, "I2C(%u, I2C.MASTER, baudrate=%u)", i2c_num, i2c_get_baudrate(&self->i2c->Init));
        } else {
            mp_printf(print, "I2C(%u, I2C.SLAVE, addr=0x%02x)", i2c_num, (self->i2c->Instance->OAR1 >> 1) & 0x7f);
        }
    }
}

/// \method init(mode, *, addr=0x12, baudrate=400000, gencall=False)
///
/// Initialise the I2C bus with the given parameters:
///
///   - `mode` must be either `I2C.MASTER` or `I2C.SLAVE`
///   - `addr` is the 7-bit address (only sensible for a slave)
///   - `baudrate` is the SCL clock rate (only sensible for a master)
///   - `gencall` is whether to support general call mode
STATIC mp_obj_t pyb_i2c_init_helper(const pyb_i2c_obj_t *self, size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
    static const mp_arg_t allowed_args[] = {
        { MP_QSTR_mode,     MP_ARG_INT, {.u_int = PYB_I2C_MASTER} },
        { MP_QSTR_addr,     MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0x12} },
        { MP_QSTR_baudrate, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = MICROPY_HW_I2C_BAUDRATE_DEFAULT} },
        { MP_QSTR_gencall,  MP_ARG_KW_ONLY | MP_ARG_BOOL, {.u_bool = false} },
        { MP_QSTR_dma,      MP_ARG_KW_ONLY | MP_ARG_BOOL, {.u_bool = false} },
    };

    // parse args
    mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
    mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);

    // set the I2C configuration values
    I2C_InitTypeDef *init = &self->i2c->Init;

    if (args[0].u_int == PYB_I2C_MASTER) {
        // use a special address to indicate we are a master
        init->OwnAddress1 = PYB_I2C_MASTER_ADDRESS;
    } else {
        init->OwnAddress1 = (args[1].u_int << 1) & 0xfe;
    }

    i2c_set_baudrate(init, MIN(args[2].u_int, MICROPY_HW_I2C_BAUDRATE_MAX));
    init->AddressingMode  = I2C_ADDRESSINGMODE_7BIT;
    init->DualAddressMode = I2C_DUALADDRESS_DISABLED;
    init->GeneralCallMode = args[3].u_bool ? I2C_GENERALCALL_ENABLED : I2C_GENERALCALL_DISABLED;
    init->OwnAddress2     = 0; // unused
    init->NoStretchMode   = I2C_NOSTRETCH_DISABLE;

    *self->use_dma = args[4].u_bool;

    // init the I2C bus
    i2c_deinit(self->i2c);
    i2c_init(self->i2c);

    return mp_const_none;
}

/// \classmethod \constructor(bus, ...)
///
/// Construct an I2C object on the given bus.  `bus` can be 1 or 2.
/// With no additional parameters, the I2C object is created but not
/// initialised (it has the settings from the last initialisation of
/// the bus, if any).  If extra arguments are given, the bus is initialised.
/// See `init` for parameters of initialisation.
///
/// The physical pins of the I2C busses are:
///
///   - `I2C(1)` is on the X position: `(SCL, SDA) = (X9, X10) = (PB6, PB7)`
///   - `I2C(2)` is on the Y position: `(SCL, SDA) = (Y9, Y10) = (PB10, PB11)`
STATIC mp_obj_t pyb_i2c_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
    // check arguments
    mp_arg_check_num(n_args, n_kw, 1, MP_OBJ_FUN_ARGS_MAX, true);

    // work out i2c bus
    int i2c_id = 0;
    if (MP_OBJ_IS_STR(args[0])) {
        const char *port = mp_obj_str_get_str(args[0]);
        if (0) {
        #ifdef MICROPY_HW_I2C1_NAME
        } else if (strcmp(port, MICROPY_HW_I2C1_NAME) == 0) {
            i2c_id = 1;
        #endif
        #ifdef MICROPY_HW_I2C2_NAME
        } else if (strcmp(port, MICROPY_HW_I2C2_NAME) == 0) {
            i2c_id = 2;
        #endif
        #ifdef MICROPY_HW_I2C3_NAME
        } else if (strcmp(port, MICROPY_HW_I2C3_NAME) == 0) {
            i2c_id = 3;
        #endif
        } else {
            nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError,
                "I2C(%s) doesn't exist", port));
        }
    } else {
        i2c_id = mp_obj_get_int(args[0]);
        if (i2c_id < 1 || i2c_id > MP_ARRAY_SIZE(pyb_i2c_obj)
            || pyb_i2c_obj[i2c_id - 1].i2c == NULL) {
            nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError,
                "I2C(%d) doesn't exist", i2c_id));
        }
    }

    // get I2C object
    const pyb_i2c_obj_t *i2c_obj = &pyb_i2c_obj[i2c_id - 1];

    if (n_args > 1 || n_kw > 0) {
        // start the peripheral
        mp_map_t kw_args;
        mp_map_init_fixed_table(&kw_args, n_kw, args + n_args);
        pyb_i2c_init_helper(i2c_obj, n_args - 1, args + 1, &kw_args);
    }

    return (mp_obj_t)i2c_obj;
}

STATIC mp_obj_t pyb_i2c_init(size_t n_args, const mp_obj_t *args, mp_map_t *kw_args) {
    return pyb_i2c_init_helper(args[0], n_args - 1, args + 1, kw_args);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_i2c_init_obj, 1, pyb_i2c_init);

/// \method deinit()
/// Turn off the I2C bus.
STATIC mp_obj_t pyb_i2c_deinit(mp_obj_t self_in) {
    pyb_i2c_obj_t *self = self_in;
    i2c_deinit(self->i2c);
    return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_i2c_deinit_obj, pyb_i2c_deinit);

/// \method is_ready(addr)
/// Check if an I2C device responds to the given address.  Only valid when in master mode.
STATIC mp_obj_t pyb_i2c_is_ready(mp_obj_t self_in, mp_obj_t i2c_addr_o) {
    pyb_i2c_obj_t *self = self_in;

    if (!in_master_mode(self)) {
        mp_raise_TypeError("I2C must be a master");
    }

    mp_uint_t i2c_addr = mp_obj_get_int(i2c_addr_o) << 1;

    for (int i = 0; i < 10; i++) {
        HAL_StatusTypeDef status = HAL_I2C_IsDeviceReady(self->i2c, i2c_addr, 10, 200);
        if (status == HAL_OK) {
            return mp_const_true;
        }
    }

    return mp_const_false;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_i2c_is_ready_obj, pyb_i2c_is_ready);

/// \method scan()
/// Scan all I2C addresses from 0x08 to 0x77 and return a list of those that respond.
/// Only valid when in master mode.
STATIC mp_obj_t pyb_i2c_scan(mp_obj_t self_in) {
    pyb_i2c_obj_t *self = self_in;

    if (!in_master_mode(self)) {
        mp_raise_TypeError("I2C must be a master");
    }

    mp_obj_t list = mp_obj_new_list(0, NULL);

    for (uint addr = 0x08; addr <= 0x77; addr++) {
        HAL_StatusTypeDef status = HAL_I2C_IsDeviceReady(self->i2c, addr << 1, 1, 200);
        if (status == HAL_OK) {
            mp_obj_list_append(list, MP_OBJ_NEW_SMALL_INT(addr));
        }
    }

    return list;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_i2c_scan_obj, pyb_i2c_scan);

/// \method send(send, addr=0x00, timeout=5000)
/// Send data on the bus:
///
///   - `send` is the data to send (an integer to send, or a buffer object)
///   - `addr` is the address to send to (only required in master mode)
///   - `timeout` is the timeout in milliseconds to wait for the send
///
/// Return value: `None`.
STATIC mp_obj_t pyb_i2c_send(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
    static const mp_arg_t allowed_args[] = {
        { MP_QSTR_send,    MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
        { MP_QSTR_addr,    MP_ARG_INT, {.u_int = PYB_I2C_MASTER_ADDRESS} },
        { MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 5000} },
    };

    // parse args
    pyb_i2c_obj_t *self = pos_args[0];
    mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
    mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);

    // get the buffer to send from
    mp_buffer_info_t bufinfo;
    uint8_t data[1];
    pyb_buf_get_for_send(args[0].u_obj, &bufinfo, data);

    // if option is set and IRQs are enabled then we can use DMA
    bool use_dma = *self->use_dma && query_irq() == IRQ_STATE_ENABLED;

    DMA_HandleTypeDef tx_dma;
    if (use_dma) {
        dma_init(&tx_dma, self->tx_dma_descr, self->i2c);
        self->i2c->hdmatx = &tx_dma;
        self->i2c->hdmarx = NULL;
    }

    // send the data
    HAL_StatusTypeDef status;
    if (in_master_mode(self)) {
        if (args[1].u_int == PYB_I2C_MASTER_ADDRESS) {
            if (use_dma) {
                dma_deinit(self->tx_dma_descr);
            }
            mp_raise_TypeError("addr argument required");
        }
        mp_uint_t i2c_addr = args[1].u_int << 1;
        if (!use_dma) {
            status = HAL_I2C_Master_Transmit(self->i2c, i2c_addr, bufinfo.buf, bufinfo.len, args[2].u_int);
        } else {
            MP_HAL_CLEAN_DCACHE(bufinfo.buf, bufinfo.len);
            status = HAL_I2C_Master_Transmit_DMA(self->i2c, i2c_addr, bufinfo.buf, bufinfo.len);
        }
    } else {
        if (!use_dma) {
            status = HAL_I2C_Slave_Transmit(self->i2c, bufinfo.buf, bufinfo.len, args[2].u_int);
        } else {
            MP_HAL_CLEAN_DCACHE(bufinfo.buf, bufinfo.len);
            status = HAL_I2C_Slave_Transmit_DMA(self->i2c, bufinfo.buf, bufinfo.len);
        }
    }

    // if we used DMA, wait for it to finish
    if (use_dma) {
        if (status == HAL_OK) {
            status = i2c_wait_dma_finished(self->i2c, args[2].u_int);
        }
        dma_deinit(self->tx_dma_descr);
    }

    if (status != HAL_OK) {
        i2c_reset_after_error(self->i2c);
        mp_hal_raise(status);
    }

    return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_i2c_send_obj, 1, pyb_i2c_send);

/// \method recv(recv, addr=0x00, timeout=5000)
///
/// Receive data on the bus:
///
///   - `recv` can be an integer, which is the number of bytes to receive,
///     or a mutable buffer, which will be filled with received bytes
///   - `addr` is the address to receive from (only required in master mode)
///   - `timeout` is the timeout in milliseconds to wait for the receive
///
/// Return value: if `recv` is an integer then a new buffer of the bytes received,
/// otherwise the same buffer that was passed in to `recv`.
STATIC mp_obj_t pyb_i2c_recv(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
    static const mp_arg_t allowed_args[] = {
        { MP_QSTR_recv,    MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
        { MP_QSTR_addr,    MP_ARG_INT, {.u_int = PYB_I2C_MASTER_ADDRESS} },
        { MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 5000} },
    };

    // parse args
    pyb_i2c_obj_t *self = pos_args[0];
    mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
    mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);

    // get the buffer to receive into
    vstr_t vstr;
    mp_obj_t o_ret = pyb_buf_get_for_recv(args[0].u_obj, &vstr);

    // if option is set and IRQs are enabled then we can use DMA
    bool use_dma = *self->use_dma && query_irq() == IRQ_STATE_ENABLED;

    DMA_HandleTypeDef rx_dma;
    if (use_dma) {
        dma_init(&rx_dma, self->rx_dma_descr, self->i2c);
        self->i2c->hdmatx = NULL;
        self->i2c->hdmarx = &rx_dma;
    }

    // receive the data
    HAL_StatusTypeDef status;
    if (in_master_mode(self)) {
        if (args[1].u_int == PYB_I2C_MASTER_ADDRESS) {
            mp_raise_TypeError("addr argument required");
        }
        mp_uint_t i2c_addr = args[1].u_int << 1;
        if (!use_dma) {
            status = HAL_I2C_Master_Receive(self->i2c, i2c_addr, (uint8_t*)vstr.buf, vstr.len, args[2].u_int);
        } else {
            MP_HAL_CLEANINVALIDATE_DCACHE(vstr.buf, vstr.len);
            status = HAL_I2C_Master_Receive_DMA(self->i2c, i2c_addr, (uint8_t*)vstr.buf, vstr.len);
        }
    } else {
        if (!use_dma) {
            status = HAL_I2C_Slave_Receive(self->i2c, (uint8_t*)vstr.buf, vstr.len, args[2].u_int);
        } else {
            MP_HAL_CLEANINVALIDATE_DCACHE(vstr.buf, vstr.len);
            status = HAL_I2C_Slave_Receive_DMA(self->i2c, (uint8_t*)vstr.buf, vstr.len);
        }
    }

    // if we used DMA, wait for it to finish
    if (use_dma) {
        if (status == HAL_OK) {
            status = i2c_wait_dma_finished(self->i2c, args[2].u_int);
        }
        dma_deinit(self->rx_dma_descr);
    }

    if (status != HAL_OK) {
        i2c_reset_after_error(self->i2c);
        mp_hal_raise(status);
    }

    // return the received data
    if (o_ret != MP_OBJ_NULL) {
        return o_ret;
    } else {
        return mp_obj_new_str_from_vstr(&mp_type_bytes, &vstr);
    }
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_i2c_recv_obj, 1, pyb_i2c_recv);

/// \method mem_read(data, addr, memaddr, timeout=5000, addr_size=8)
///
/// Read from the memory of an I2C device:
///
///   - `data` can be an integer or a buffer to read into
///   - `addr` is the I2C device address
///   - `memaddr` is the memory location within the I2C device
///   - `timeout` is the timeout in milliseconds to wait for the read
///   - `addr_size` selects width of memaddr: 8 or 16 bits
///
/// Returns the read data.
/// This is only valid in master mode.
STATIC const mp_arg_t pyb_i2c_mem_read_allowed_args[] = {
    { MP_QSTR_data,    MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
    { MP_QSTR_addr,    MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 0} },
    { MP_QSTR_memaddr, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 0} },
    { MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 5000} },
    { MP_QSTR_addr_size, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 8} },
};

STATIC mp_obj_t pyb_i2c_mem_read(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
    // parse args
    pyb_i2c_obj_t *self = pos_args[0];
    mp_arg_val_t args[MP_ARRAY_SIZE(pyb_i2c_mem_read_allowed_args)];
    mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(pyb_i2c_mem_read_allowed_args), pyb_i2c_mem_read_allowed_args, args);

    if (!in_master_mode(self)) {
        mp_raise_TypeError("I2C must be a master");
    }

    // get the buffer to read into
    vstr_t vstr;
    mp_obj_t o_ret = pyb_buf_get_for_recv(args[0].u_obj, &vstr);

    // get the addresses
    mp_uint_t i2c_addr = args[1].u_int << 1;
    mp_uint_t mem_addr = args[2].u_int;
    // determine width of mem_addr; default is 8 bits, entering any other value gives 16 bit width
    mp_uint_t mem_addr_size = I2C_MEMADD_SIZE_8BIT;
    if (args[4].u_int != 8) {
        mem_addr_size = I2C_MEMADD_SIZE_16BIT;
    }

    // if option is set and IRQs are enabled then we can use DMA
    bool use_dma = *self->use_dma && query_irq() == IRQ_STATE_ENABLED;

    HAL_StatusTypeDef status;
    if (!use_dma) {
        status = HAL_I2C_Mem_Read(self->i2c, i2c_addr, mem_addr, mem_addr_size, (uint8_t*)vstr.buf, vstr.len, args[3].u_int);
    } else {
        DMA_HandleTypeDef rx_dma;
        dma_init(&rx_dma, self->rx_dma_descr, self->i2c);
        self->i2c->hdmatx = NULL;
        self->i2c->hdmarx = &rx_dma;
        MP_HAL_CLEANINVALIDATE_DCACHE(vstr.buf, vstr.len);
        status = HAL_I2C_Mem_Read_DMA(self->i2c, i2c_addr, mem_addr, mem_addr_size, (uint8_t*)vstr.buf, vstr.len);
        if (status == HAL_OK) {
            status = i2c_wait_dma_finished(self->i2c, args[3].u_int);
        }
        dma_deinit(self->rx_dma_descr);
    }

    if (status != HAL_OK) {
        i2c_reset_after_error(self->i2c);
        mp_hal_raise(status);
    }

    // return the read data
    if (o_ret != MP_OBJ_NULL) {
        return o_ret;
    } else {
        return mp_obj_new_str_from_vstr(&mp_type_bytes, &vstr);
    }
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_i2c_mem_read_obj, 1, pyb_i2c_mem_read);

/// \method mem_write(data, addr, memaddr, timeout=5000, addr_size=8)
///
/// Write to the memory of an I2C device:
///
///   - `data` can be an integer or a buffer to write from
///   - `addr` is the I2C device address
///   - `memaddr` is the memory location within the I2C device
///   - `timeout` is the timeout in milliseconds to wait for the write
///   - `addr_size` selects width of memaddr: 8 or 16 bits
///
/// Returns `None`.
/// This is only valid in master mode.
STATIC mp_obj_t pyb_i2c_mem_write(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
    // parse args (same as mem_read)
    pyb_i2c_obj_t *self = pos_args[0];
    mp_arg_val_t args[MP_ARRAY_SIZE(pyb_i2c_mem_read_allowed_args)];
    mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(pyb_i2c_mem_read_allowed_args), pyb_i2c_mem_read_allowed_args, args);

    if (!in_master_mode(self)) {
        mp_raise_TypeError("I2C must be a master");
    }

    // get the buffer to write from
    mp_buffer_info_t bufinfo;
    uint8_t data[1];
    pyb_buf_get_for_send(args[0].u_obj, &bufinfo, data);

    // get the addresses
    mp_uint_t i2c_addr = args[1].u_int << 1;
    mp_uint_t mem_addr = args[2].u_int;
    // determine width of mem_addr; default is 8 bits, entering any other value gives 16 bit width
    mp_uint_t mem_addr_size = I2C_MEMADD_SIZE_8BIT;
    if (args[4].u_int != 8) {
        mem_addr_size = I2C_MEMADD_SIZE_16BIT;
    }

    // if option is set and IRQs are enabled then we can use DMA
    bool use_dma = *self->use_dma && query_irq() == IRQ_STATE_ENABLED;

    HAL_StatusTypeDef status;
    if (!use_dma) {
        status = HAL_I2C_Mem_Write(self->i2c, i2c_addr, mem_addr, mem_addr_size, bufinfo.buf, bufinfo.len, args[3].u_int);
    } else {
        DMA_HandleTypeDef tx_dma;
        dma_init(&tx_dma, self->tx_dma_descr, self->i2c);
        self->i2c->hdmatx = &tx_dma;
        self->i2c->hdmarx = NULL;
        MP_HAL_CLEAN_DCACHE(bufinfo.buf, bufinfo.len);
        status = HAL_I2C_Mem_Write_DMA(self->i2c, i2c_addr, mem_addr, mem_addr_size, bufinfo.buf, bufinfo.len);
        if (status == HAL_OK) {
            status = i2c_wait_dma_finished(self->i2c, args[3].u_int);
        }
        dma_deinit(self->tx_dma_descr);
    }

    if (status != HAL_OK) {
        i2c_reset_after_error(self->i2c);
        mp_hal_raise(status);
    }

    return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_i2c_mem_write_obj, 1, pyb_i2c_mem_write);

STATIC const mp_rom_map_elem_t pyb_i2c_locals_dict_table[] = {
    // instance methods
    { MP_ROM_QSTR(MP_QSTR_init), MP_ROM_PTR(&pyb_i2c_init_obj) },
    { MP_ROM_QSTR(MP_QSTR_deinit), MP_ROM_PTR(&pyb_i2c_deinit_obj) },
    { MP_ROM_QSTR(MP_QSTR_is_ready), MP_ROM_PTR(&pyb_i2c_is_ready_obj) },
    { MP_ROM_QSTR(MP_QSTR_scan), MP_ROM_PTR(&pyb_i2c_scan_obj) },
    { MP_ROM_QSTR(MP_QSTR_send), MP_ROM_PTR(&pyb_i2c_send_obj) },
    { MP_ROM_QSTR(MP_QSTR_recv), MP_ROM_PTR(&pyb_i2c_recv_obj) },
    { MP_ROM_QSTR(MP_QSTR_mem_read), MP_ROM_PTR(&pyb_i2c_mem_read_obj) },
    { MP_ROM_QSTR(MP_QSTR_mem_write), MP_ROM_PTR(&pyb_i2c_mem_write_obj) },

    // class constants
    /// \constant MASTER - for initialising the bus to master mode
    /// \constant SLAVE - for initialising the bus to slave mode
    { MP_ROM_QSTR(MP_QSTR_MASTER), MP_ROM_INT(PYB_I2C_MASTER) },
    { MP_ROM_QSTR(MP_QSTR_SLAVE), MP_ROM_INT(PYB_I2C_SLAVE) },
};

STATIC MP_DEFINE_CONST_DICT(pyb_i2c_locals_dict, pyb_i2c_locals_dict_table);

const mp_obj_type_t pyb_i2c_type = {
    { &mp_type_type },
    .name = MP_QSTR_I2C,
    .print = pyb_i2c_print,
    .make_new = pyb_i2c_make_new,
    .locals_dict = (mp_obj_dict_t*)&pyb_i2c_locals_dict,
};