CircuitPython

Source code browser

Note: This site will be taken down by the end of the year

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
/*
 * This file is part of the MicroPython project, http://micropython.org/
 *
 * The MIT License (MIT)
 *
 * Copyright (c) 2013-2015 Damien P. George
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

#include <stdio.h>
#include <string.h>

#include "modmachine.h"
#include "py/gc.h"
#include "py/runtime.h"
#include "py/mphal.h"
#include "extmod/machine_mem.h"
#include "extmod/machine_signal.h"
#include "extmod/machine_pulse.h"
#include "extmod/machine_i2c.h"
#include "lib/utils/pyexec.h"
#include "lib/oofatfs/ff.h"
#include "extmod/vfs.h"
#include "extmod/vfs_fat.h"
#include "gccollect.h"
#include "irq.h"
#include "pybthread.h"
#include "rng.h"
#include "storage.h"
#include "pin.h"
#include "timer.h"
#include "usb.h"
#include "rtc.h"
#include "i2c.h"
#include "spi.h"
#include "uart.h"
#include "wdt.h"
#include "genhdr/pllfreqtable.h"

#if defined(STM32L4)
// L4 does not have a POR, so use BOR instead
#define RCC_CSR_PORRSTF RCC_CSR_BORRSTF
#endif

#if defined(STM32H7)
#define RCC_SR          RSR
#define RCC_SR_IWDGRSTF RCC_RSR_IWDG1RSTF
#define RCC_SR_WWDGRSTF RCC_RSR_WWDG1RSTF
#define RCC_SR_PORRSTF  RCC_RSR_PORRSTF
#define RCC_SR_BORRSTF  RCC_RSR_BORRSTF
#define RCC_SR_PINRSTF  RCC_RSR_PINRSTF
#define RCC_SR_RMVF     RCC_RSR_RMVF
#else
#define RCC_SR          CSR
#define RCC_SR_IWDGRSTF RCC_CSR_IWDGRSTF
#define RCC_SR_WWDGRSTF RCC_CSR_WWDGRSTF
#define RCC_SR_PORRSTF  RCC_CSR_PORRSTF
#define RCC_SR_BORRSTF  RCC_CSR_BORRSTF
#define RCC_SR_PINRSTF  RCC_CSR_PINRSTF
#define RCC_SR_RMVF     RCC_CSR_RMVF
#endif

#define PYB_RESET_SOFT      (0)
#define PYB_RESET_POWER_ON  (1)
#define PYB_RESET_HARD      (2)
#define PYB_RESET_WDT       (3)
#define PYB_RESET_DEEPSLEEP (4)

STATIC uint32_t reset_cause;

void machine_init(void) {
    #if defined(STM32F4)
    if (PWR->CSR & PWR_CSR_SBF) {
        // came out of standby
        reset_cause = PYB_RESET_DEEPSLEEP;
        PWR->CR |= PWR_CR_CSBF;
    } else
    #elif defined(STM32F7)
    if (PWR->CSR1 & PWR_CSR1_SBF) {
        // came out of standby
        reset_cause = PYB_RESET_DEEPSLEEP;
        PWR->CR1 |= PWR_CR1_CSBF;
    } else
    #elif defined(STM32H7)
    if (PWR->CPUCR & PWR_CPUCR_SBF || PWR->CPUCR & PWR_CPUCR_STOPF) {
        // came out of standby or stop mode
        reset_cause = PYB_RESET_DEEPSLEEP;
        PWR->CPUCR |= PWR_CPUCR_CSSF;
    } else
    #endif
    {
        // get reset cause from RCC flags
        uint32_t state = RCC->RCC_SR;
        if (state & RCC_SR_IWDGRSTF || state & RCC_SR_WWDGRSTF) {
            reset_cause = PYB_RESET_WDT;
        } else if (state & RCC_SR_PORRSTF
            #if !defined(STM32F0)
            || state & RCC_SR_BORRSTF
            #endif
            ) {
            reset_cause = PYB_RESET_POWER_ON;
        } else if (state & RCC_SR_PINRSTF) {
            reset_cause = PYB_RESET_HARD;
        } else {
            // default is soft reset
            reset_cause = PYB_RESET_SOFT;
        }
    }
    // clear RCC reset flags
    RCC->RCC_SR |= RCC_SR_RMVF;
}

void machine_deinit(void) {
    // we are doing a soft-reset so change the reset_cause
    reset_cause = PYB_RESET_SOFT;
}

// machine.info([dump_alloc_table])
// Print out lots of information about the board.
STATIC mp_obj_t machine_info(size_t n_args, const mp_obj_t *args) {
    // get and print unique id; 96 bits
    {
        byte *id = (byte*)MP_HAL_UNIQUE_ID_ADDRESS;
        printf("ID=%02x%02x%02x%02x:%02x%02x%02x%02x:%02x%02x%02x%02x\n", id[0], id[1], id[2], id[3], id[4], id[5], id[6], id[7], id[8], id[9], id[10], id[11]);
    }

    // get and print clock speeds
    // SYSCLK=168MHz, HCLK=168MHz, PCLK1=42MHz, PCLK2=84MHz
    {
        #if defined(STM32F0)
        printf("S=%u\nH=%u\nP1=%u\n",
               (unsigned int)HAL_RCC_GetSysClockFreq(),
               (unsigned int)HAL_RCC_GetHCLKFreq(),
               (unsigned int)HAL_RCC_GetPCLK1Freq());
        #else
        printf("S=%u\nH=%u\nP1=%u\nP2=%u\n",
               (unsigned int)HAL_RCC_GetSysClockFreq(),
               (unsigned int)HAL_RCC_GetHCLKFreq(),
               (unsigned int)HAL_RCC_GetPCLK1Freq(),
               (unsigned int)HAL_RCC_GetPCLK2Freq());
        #endif
    }

    // to print info about memory
    {
        printf("_etext=%p\n", &_etext);
        printf("_sidata=%p\n", &_sidata);
        printf("_sdata=%p\n", &_sdata);
        printf("_edata=%p\n", &_edata);
        printf("_sbss=%p\n", &_sbss);
        printf("_ebss=%p\n", &_ebss);
        printf("_estack=%p\n", &_estack);
        printf("_ram_start=%p\n", &_ram_start);
        printf("_heap_start=%p\n", &_heap_start);
        printf("_heap_end=%p\n", &_heap_end);
        printf("_ram_end=%p\n", &_ram_end);
    }

    // qstr info
    {
        mp_uint_t n_pool, n_qstr, n_str_data_bytes, n_total_bytes;
        qstr_pool_info(&n_pool, &n_qstr, &n_str_data_bytes, &n_total_bytes);
        printf("qstr:\n  n_pool=" UINT_FMT "\n  n_qstr=" UINT_FMT "\n  n_str_data_bytes=" UINT_FMT "\n  n_total_bytes=" UINT_FMT "\n", n_pool, n_qstr, n_str_data_bytes, n_total_bytes);
    }

    // GC info
    {
        gc_info_t info;
        gc_info(&info);
        printf("GC:\n");
        printf("  " UINT_FMT " total\n", info.total);
        printf("  " UINT_FMT " : " UINT_FMT "\n", info.used, info.free);
        printf("  1=" UINT_FMT " 2=" UINT_FMT " m=" UINT_FMT "\n", info.num_1block, info.num_2block, info.max_block);
    }

    // free space on flash
    {
        #if MICROPY_VFS_FAT
        for (mp_vfs_mount_t *vfs = MP_STATE_VM(vfs_mount_table); vfs != NULL; vfs = vfs->next) {
            if (strncmp("/flash", vfs->str, vfs->len) == 0) {
                // assumes that it's a FatFs filesystem
                fs_user_mount_t *vfs_fat = MP_OBJ_TO_PTR(vfs->obj);
                DWORD nclst;
                f_getfree(&vfs_fat->fatfs, &nclst);
                printf("LFS free: %u bytes\n", (uint)(nclst * vfs_fat->fatfs.csize * 512));
                break;
            }
        }
        #endif
    }

    #if MICROPY_PY_THREAD
    pyb_thread_dump();
    #endif

    if (n_args == 1) {
        // arg given means dump gc allocation table
        gc_dump_alloc_table();
    }

    return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(machine_info_obj, 0, 1, machine_info);

// Returns a string of 12 bytes (96 bits), which is the unique ID for the MCU.
STATIC mp_obj_t machine_unique_id(void) {
    byte *id = (byte*)MP_HAL_UNIQUE_ID_ADDRESS;
    return mp_obj_new_bytes(id, 12);
}
MP_DEFINE_CONST_FUN_OBJ_0(machine_unique_id_obj, machine_unique_id);

// Resets the pyboard in a manner similar to pushing the external RESET button.
STATIC mp_obj_t machine_reset(void) {
    NVIC_SystemReset();
    return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_0(machine_reset_obj, machine_reset);

STATIC mp_obj_t machine_soft_reset(void) {
    pyexec_system_exit = PYEXEC_FORCED_EXIT;
    nlr_raise(mp_obj_new_exception(&mp_type_SystemExit));
}
MP_DEFINE_CONST_FUN_OBJ_0(machine_soft_reset_obj, machine_soft_reset);

// Activate the bootloader without BOOT* pins.
STATIC NORETURN mp_obj_t machine_bootloader(void) {
    #if MICROPY_HW_ENABLE_USB
    pyb_usb_dev_deinit();
    #endif
    #if MICROPY_HW_ENABLE_STORAGE
    storage_flush();
    #endif

    HAL_RCC_DeInit();
    HAL_DeInit();

    #if (__MPU_PRESENT == 1)
    // MPU must be disabled for bootloader to function correctly
    HAL_MPU_Disable();
    #endif

#if defined(STM32F7) || defined(STM32H7)
    // arm-none-eabi-gcc 4.9.0 does not correctly inline this
    // MSP function, so we write it out explicitly here.
    //__set_MSP(*((uint32_t*) 0x1FF00000));
    __ASM volatile ("movw r3, #0x0000\nmovt r3, #0x1FF0\nldr r3, [r3, #0]\nMSR msp, r3\n" : : : "r3", "sp");

    ((void (*)(void)) *((uint32_t*) 0x1FF00004))();
#else
    __HAL_SYSCFG_REMAPMEMORY_SYSTEMFLASH();

    // arm-none-eabi-gcc 4.9.0 does not correctly inline this
    // MSP function, so we write it out explicitly here.
    //__set_MSP(*((uint32_t*) 0x00000000));
    __ASM volatile ("movs r3, #0\nldr r3, [r3, #0]\nMSR msp, r3\n" : : : "r3", "sp");

    ((void (*)(void)) *((uint32_t*) 0x00000004))();
#endif

    while (1);
}
MP_DEFINE_CONST_FUN_OBJ_0(machine_bootloader_obj, machine_bootloader);

#if !(defined(STM32F0) || defined(STM32L4))
// get or set the MCU frequencies
STATIC mp_uint_t machine_freq_calc_ahb_div(mp_uint_t wanted_div) {
    if (wanted_div <= 1) { return RCC_SYSCLK_DIV1; }
    else if (wanted_div <= 2) { return RCC_SYSCLK_DIV2; }
    else if (wanted_div <= 4) { return RCC_SYSCLK_DIV4; }
    else if (wanted_div <= 8) { return RCC_SYSCLK_DIV8; }
    else if (wanted_div <= 16) { return RCC_SYSCLK_DIV16; }
    else if (wanted_div <= 64) { return RCC_SYSCLK_DIV64; }
    else if (wanted_div <= 128) { return RCC_SYSCLK_DIV128; }
    else if (wanted_div <= 256) { return RCC_SYSCLK_DIV256; }
    else { return RCC_SYSCLK_DIV512; }
}
STATIC mp_uint_t machine_freq_calc_apb_div(mp_uint_t wanted_div) {
    if (wanted_div <= 1) { return RCC_HCLK_DIV1; }
    else if (wanted_div <= 2) { return RCC_HCLK_DIV2; }
    else if (wanted_div <= 4) { return RCC_HCLK_DIV4; }
    else if (wanted_div <= 8) { return RCC_HCLK_DIV8; }
    else { return RCC_SYSCLK_DIV16; }
}
#endif

STATIC mp_obj_t machine_freq(size_t n_args, const mp_obj_t *args) {
    if (n_args == 0) {
        // get
        mp_obj_t tuple[] = {
           mp_obj_new_int(HAL_RCC_GetSysClockFreq()),
           mp_obj_new_int(HAL_RCC_GetHCLKFreq()),
           mp_obj_new_int(HAL_RCC_GetPCLK1Freq()),
           #if !defined(STM32F0)
           mp_obj_new_int(HAL_RCC_GetPCLK2Freq()),
           #endif
        };
        return mp_obj_new_tuple(MP_ARRAY_SIZE(tuple), tuple);
    } else {
        // set

        #if defined(STM32F0) || defined(STM32L4)
        mp_raise_NotImplementedError("machine.freq set not supported yet");
        #else

        mp_int_t wanted_sysclk = mp_obj_get_int(args[0]) / 1000000;

        // default PLL parameters that give 48MHz on PLL48CK
        uint32_t m = HSE_VALUE / 1000000, n = 336, p = 2, q = 7;
        uint32_t sysclk_source;

        // search for a valid PLL configuration that keeps USB at 48MHz
        for (const uint16_t *pll = &pll_freq_table[MP_ARRAY_SIZE(pll_freq_table) - 1]; pll >= &pll_freq_table[0]; --pll) {
            uint32_t sys = *pll & 0xff;
            if (sys <= wanted_sysclk) {
                m = (*pll >> 10) & 0x3f;
                p = ((*pll >> 7) & 0x6) + 2;
                if (m == 0) {
                    // special entry for using HSI directly
                    sysclk_source = RCC_SYSCLKSOURCE_HSI;
                    goto set_clk;
                } else if (m == 1) {
                    // special entry for using HSE directly
                    sysclk_source = RCC_SYSCLKSOURCE_HSE;
                    goto set_clk;
                } else {
                    // use PLL
                    sysclk_source = RCC_SYSCLKSOURCE_PLLCLK;
                    uint32_t vco_out = sys * p;
                    n = vco_out * m / (HSE_VALUE / 1000000);
                    q = vco_out / 48;
                    goto set_clk;
                }
            }
        }
        mp_raise_ValueError("can't make valid freq");

    set_clk:
        //printf("%lu %lu %lu %lu %lu\n", sysclk_source, m, n, p, q);

        // let the USB CDC have a chance to process before we change the clock
        mp_hal_delay_ms(5);

        // desired system clock source is in sysclk_source
        RCC_ClkInitTypeDef RCC_ClkInitStruct;
        RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2);
        if (sysclk_source == RCC_SYSCLKSOURCE_PLLCLK) {
            // set HSE as system clock source to allow modification of the PLL configuration
            // we then change to PLL after re-configuring PLL
            RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSE;
        } else {
            // directly set the system clock source as desired
            RCC_ClkInitStruct.SYSCLKSource = sysclk_source;
        }
        wanted_sysclk *= 1000000;
        if (n_args >= 2) {
            // note: AHB freq required to be >= 14.2MHz for USB operation
            RCC_ClkInitStruct.AHBCLKDivider = machine_freq_calc_ahb_div(wanted_sysclk / mp_obj_get_int(args[1]));
        } else {
            RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
        }
        if (n_args >= 3) {
            RCC_ClkInitStruct.APB1CLKDivider = machine_freq_calc_apb_div(wanted_sysclk / mp_obj_get_int(args[2]));
        } else {
            RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
        }
        if (n_args >= 4) {
            RCC_ClkInitStruct.APB2CLKDivider = machine_freq_calc_apb_div(wanted_sysclk / mp_obj_get_int(args[3]));
        } else {
            RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;
        }
        #if defined(MICROPY_HW_CLK_LAST_FREQ) && MICROPY_HW_CLK_LAST_FREQ
        uint32_t h = RCC_ClkInitStruct.AHBCLKDivider >> 4;
        uint32_t b1 = RCC_ClkInitStruct.APB1CLKDivider >> 10;
        uint32_t b2 = RCC_ClkInitStruct.APB2CLKDivider >> 10;
        #endif
        if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_1) != HAL_OK) {
            goto fail;
        }

        // re-configure PLL
        // even if we don't use the PLL for the system clock, we still need it for USB, RNG and SDIO
        RCC_OscInitTypeDef RCC_OscInitStruct;
        RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
        RCC_OscInitStruct.HSEState = MICROPY_HW_CLK_HSE_STATE;
        RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
        RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
        RCC_OscInitStruct.PLL.PLLM = m;
        RCC_OscInitStruct.PLL.PLLN = n;
        RCC_OscInitStruct.PLL.PLLP = p;
        RCC_OscInitStruct.PLL.PLLQ = q;
        if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) {
            goto fail;
        }

        // set PLL as system clock source if wanted
        if (sysclk_source == RCC_SYSCLKSOURCE_PLLCLK) {
            uint32_t flash_latency;
            #if defined(STM32F7)
            // if possible, scale down the internal voltage regulator to save power
            // the flash_latency values assume a supply voltage between 2.7V and 3.6V
            uint32_t volt_scale;
            if (wanted_sysclk <= 90000000) {
                volt_scale = PWR_REGULATOR_VOLTAGE_SCALE3;
                flash_latency = FLASH_LATENCY_2;
            } else if (wanted_sysclk <= 120000000) {
                volt_scale = PWR_REGULATOR_VOLTAGE_SCALE3;
                flash_latency = FLASH_LATENCY_3;
            } else if (wanted_sysclk <= 144000000) {
                volt_scale = PWR_REGULATOR_VOLTAGE_SCALE3;
                flash_latency = FLASH_LATENCY_4;
            } else if (wanted_sysclk <= 180000000) {
                volt_scale = PWR_REGULATOR_VOLTAGE_SCALE2;
                flash_latency = FLASH_LATENCY_5;
            } else if (wanted_sysclk <= 210000000) {
                volt_scale = PWR_REGULATOR_VOLTAGE_SCALE1;
                flash_latency = FLASH_LATENCY_6;
            } else {
                volt_scale = PWR_REGULATOR_VOLTAGE_SCALE1;
                flash_latency = FLASH_LATENCY_7;
            }
            if (HAL_PWREx_ControlVoltageScaling(volt_scale) != HAL_OK) {
                goto fail;
            }
            #endif

            #if !defined(STM32F7)
            #if !defined(MICROPY_HW_FLASH_LATENCY)
            #define MICROPY_HW_FLASH_LATENCY FLASH_LATENCY_5
            #endif
            flash_latency = MICROPY_HW_FLASH_LATENCY;
            #endif
            RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_SYSCLK;
            RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
            if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, flash_latency) != HAL_OK) {
                goto fail;
            }
        }

        #if defined(MICROPY_HW_CLK_LAST_FREQ) && MICROPY_HW_CLK_LAST_FREQ
        #if defined(STM32F7)
        #define FREQ_BKP BKP31R
        #else
        #define FREQ_BKP BKP19R
        #endif
        // qqqqqqqq pppppppp nnnnnnnn nnmmmmmm
        // qqqqQQQQ ppppppPP nNNNNNNN NNMMMMMM
        // 222111HH HHQQQQPP nNNNNNNN NNMMMMMM
        p = (p / 2) - 1;
        RTC->FREQ_BKP = m
            | (n << 6) | (p << 16) | (q << 18)
            | (h << 22)
            | (b1 << 26)
            | (b2 << 29);
        #endif

        return mp_const_none;

    fail:;
        void NORETURN __fatal_error(const char *msg);
        __fatal_error("can't change freq");

        #endif
    }
}
MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(machine_freq_obj, 0, 4, machine_freq);

STATIC mp_obj_t machine_sleep(void) {
    #if defined(STM32L4)

    // Enter Stop 1 mode
    __HAL_RCC_WAKEUPSTOP_CLK_CONFIG(RCC_STOP_WAKEUPCLOCK_MSI);
    HAL_PWR_EnterSTOPMode(PWR_LOWPOWERREGULATOR_ON, PWR_STOPENTRY_WFI);

    // reconfigure system clock after wakeup
    // Enable Power Control clock
    __HAL_RCC_PWR_CLK_ENABLE();

    // Get the Oscillators configuration according to the internal RCC registers
    RCC_OscInitTypeDef RCC_OscInitStruct = {0};
    HAL_RCC_GetOscConfig(&RCC_OscInitStruct);
    RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_MSI;
    RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
    HAL_RCC_OscConfig(&RCC_OscInitStruct);

    // Get the Clocks configuration according to the internal RCC registers
    RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
    uint32_t pFLatency = 0;
    HAL_RCC_GetClockConfig(&RCC_ClkInitStruct, &pFLatency);

    // Select PLL as system clock source and configure the HCLK, PCLK1 and PCLK2 clock dividers
    RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_SYSCLK;
    RCC_ClkInitStruct.SYSCLKSource  = RCC_SYSCLKSOURCE_PLLCLK;
    HAL_RCC_ClockConfig(&RCC_ClkInitStruct, pFLatency);

    #else

    #if !defined(STM32F0)
    // takes longer to wake but reduces stop current
    HAL_PWREx_EnableFlashPowerDown();
    #endif

    # if defined(STM32F7)
    HAL_PWR_EnterSTOPMode((PWR_CR1_LPDS | PWR_CR1_LPUDS | PWR_CR1_FPDS | PWR_CR1_UDEN), PWR_STOPENTRY_WFI);
    # else
    HAL_PWR_EnterSTOPMode(PWR_LOWPOWERREGULATOR_ON, PWR_STOPENTRY_WFI);
    #endif

    // reconfigure the system clock after waking up

    // enable HSE
    __HAL_RCC_HSE_CONFIG(MICROPY_HW_CLK_HSE_STATE);
    while (!__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY)) {
    }

    // enable PLL
    __HAL_RCC_PLL_ENABLE();
    while (!__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY)) {
    }

    // select PLL as system clock source
    MODIFY_REG(RCC->CFGR, RCC_CFGR_SW, RCC_SYSCLKSOURCE_PLLCLK);
    #if defined(STM32H7)
    while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_CFGR_SWS_PLL1) {
    #else
    while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_CFGR_SWS_PLL) {
    #endif
    }

    #endif

    return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_0(machine_sleep_obj, machine_sleep);

STATIC mp_obj_t machine_deepsleep(void) {
    rtc_init_finalise();

#if defined(STM32L4)
    printf("machine.deepsleep not supported yet\n");
#else
    // We need to clear the PWR wake-up-flag before entering standby, since
    // the flag may have been set by a previous wake-up event.  Furthermore,
    // we need to disable the wake-up sources while clearing this flag, so
    // that if a source is active it does actually wake the device.
    // See section 5.3.7 of RM0090.

    // Note: we only support RTC ALRA, ALRB, WUT and TS.
    // TODO support TAMP and WKUP (PA0 external pin).
    #if defined(STM32F0)
    #define CR_BITS (RTC_CR_ALRAIE | RTC_CR_WUTIE | RTC_CR_TSIE)
    #define ISR_BITS (RTC_ISR_ALRAF | RTC_ISR_WUTF | RTC_ISR_TSF)
    #else
    #define CR_BITS (RTC_CR_ALRAIE | RTC_CR_ALRBIE | RTC_CR_WUTIE | RTC_CR_TSIE)
    #define ISR_BITS (RTC_ISR_ALRAF | RTC_ISR_ALRBF | RTC_ISR_WUTF | RTC_ISR_TSF)
    #endif

    // save RTC interrupts
    uint32_t save_irq_bits = RTC->CR & CR_BITS;

    // disable RTC interrupts
    RTC->CR &= ~CR_BITS;

    // clear RTC wake-up flags
    RTC->ISR &= ~ISR_BITS;

    #if defined(STM32F7)
    // disable wake-up flags
    PWR->CSR2 &= ~(PWR_CSR2_EWUP6 | PWR_CSR2_EWUP5 | PWR_CSR2_EWUP4 | PWR_CSR2_EWUP3 | PWR_CSR2_EWUP2 | PWR_CSR2_EWUP1);
    // clear global wake-up flag
    PWR->CR2 |= PWR_CR2_CWUPF6 | PWR_CR2_CWUPF5 | PWR_CR2_CWUPF4 | PWR_CR2_CWUPF3 | PWR_CR2_CWUPF2 | PWR_CR2_CWUPF1;
    #elif defined(STM32H7)
    // TODO
    #else
    // clear global wake-up flag
    PWR->CR |= PWR_CR_CWUF;
    #endif

    // enable previously-enabled RTC interrupts
    RTC->CR |= save_irq_bits;

    // enter standby mode
    HAL_PWR_EnterSTANDBYMode();
    // we never return; MCU is reset on exit from standby
#endif
    return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_0(machine_deepsleep_obj, machine_deepsleep);

STATIC mp_obj_t machine_reset_cause(void) {
    return MP_OBJ_NEW_SMALL_INT(reset_cause);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(machine_reset_cause_obj, machine_reset_cause);

STATIC const mp_rom_map_elem_t machine_module_globals_table[] = {
    { MP_ROM_QSTR(MP_QSTR___name__),            MP_ROM_QSTR(MP_QSTR_umachine) },
    { MP_ROM_QSTR(MP_QSTR_info),                MP_ROM_PTR(&machine_info_obj) },
    { MP_ROM_QSTR(MP_QSTR_unique_id),           MP_ROM_PTR(&machine_unique_id_obj) },
    { MP_ROM_QSTR(MP_QSTR_reset),               MP_ROM_PTR(&machine_reset_obj) },
    { MP_ROM_QSTR(MP_QSTR_soft_reset),          MP_ROM_PTR(&machine_soft_reset_obj) },
    { MP_ROM_QSTR(MP_QSTR_bootloader),          MP_ROM_PTR(&machine_bootloader_obj) },
    { MP_ROM_QSTR(MP_QSTR_freq),                MP_ROM_PTR(&machine_freq_obj) },
#if MICROPY_HW_ENABLE_RNG
    { MP_ROM_QSTR(MP_QSTR_rng),                 MP_ROM_PTR(&pyb_rng_get_obj) },
#endif
    { MP_ROM_QSTR(MP_QSTR_idle),                MP_ROM_PTR(&pyb_wfi_obj) },
    { MP_ROM_QSTR(MP_QSTR_sleep),               MP_ROM_PTR(&machine_sleep_obj) },
    { MP_ROM_QSTR(MP_QSTR_deepsleep),           MP_ROM_PTR(&machine_deepsleep_obj) },
    { MP_ROM_QSTR(MP_QSTR_reset_cause),         MP_ROM_PTR(&machine_reset_cause_obj) },
#if 0
    { MP_ROM_QSTR(MP_QSTR_wake_reason),         MP_ROM_PTR(&machine_wake_reason_obj) },
#endif

    { MP_ROM_QSTR(MP_QSTR_disable_irq),         MP_ROM_PTR(&pyb_disable_irq_obj) },
    { MP_ROM_QSTR(MP_QSTR_enable_irq),          MP_ROM_PTR(&pyb_enable_irq_obj) },

    { MP_ROM_QSTR(MP_QSTR_time_pulse_us),       MP_ROM_PTR(&machine_time_pulse_us_obj) },

    { MP_ROM_QSTR(MP_QSTR_mem8),                MP_ROM_PTR(&machine_mem8_obj) },
    { MP_ROM_QSTR(MP_QSTR_mem16),               MP_ROM_PTR(&machine_mem16_obj) },
    { MP_ROM_QSTR(MP_QSTR_mem32),               MP_ROM_PTR(&machine_mem32_obj) },

    { MP_ROM_QSTR(MP_QSTR_Pin),                 MP_ROM_PTR(&pin_type) },
    { MP_ROM_QSTR(MP_QSTR_Signal),              MP_ROM_PTR(&machine_signal_type) },

#if 0
    { MP_ROM_QSTR(MP_QSTR_RTC),                 MP_ROM_PTR(&pyb_rtc_type) },
    { MP_ROM_QSTR(MP_QSTR_ADC),                 MP_ROM_PTR(&pyb_adc_type) },
#endif
#if MICROPY_PY_MACHINE_I2C
    { MP_ROM_QSTR(MP_QSTR_I2C),                 MP_ROM_PTR(&machine_i2c_type) },
#endif
    { MP_ROM_QSTR(MP_QSTR_SPI),                 MP_ROM_PTR(&machine_hard_spi_type) },
    { MP_ROM_QSTR(MP_QSTR_UART),                MP_ROM_PTR(&pyb_uart_type) },
    { MP_ROM_QSTR(MP_QSTR_WDT),                 MP_ROM_PTR(&pyb_wdt_type) },
#if 0
    { MP_ROM_QSTR(MP_QSTR_Timer),               MP_ROM_PTR(&pyb_timer_type) },
    { MP_ROM_QSTR(MP_QSTR_HeartBeat),           MP_ROM_PTR(&pyb_heartbeat_type) },
    { MP_ROM_QSTR(MP_QSTR_SD),                  MP_ROM_PTR(&pyb_sd_type) },

    // class constants
    { MP_ROM_QSTR(MP_QSTR_IDLE),                MP_ROM_INT(PYB_PWR_MODE_ACTIVE) },
    { MP_ROM_QSTR(MP_QSTR_SLEEP),               MP_ROM_INT(PYB_PWR_MODE_LPDS) },
    { MP_ROM_QSTR(MP_QSTR_DEEPSLEEP),           MP_ROM_INT(PYB_PWR_MODE_HIBERNATE) },
#endif
    { MP_ROM_QSTR(MP_QSTR_PWRON_RESET),         MP_ROM_INT(PYB_RESET_POWER_ON) },
    { MP_ROM_QSTR(MP_QSTR_HARD_RESET),          MP_ROM_INT(PYB_RESET_HARD) },
    { MP_ROM_QSTR(MP_QSTR_WDT_RESET),           MP_ROM_INT(PYB_RESET_WDT) },
    { MP_ROM_QSTR(MP_QSTR_DEEPSLEEP_RESET),     MP_ROM_INT(PYB_RESET_DEEPSLEEP) },
    { MP_ROM_QSTR(MP_QSTR_SOFT_RESET),          MP_ROM_INT(PYB_RESET_SOFT) },
#if 0
    { MP_ROM_QSTR(MP_QSTR_WLAN_WAKE),           MP_ROM_INT(PYB_SLP_WAKED_BY_WLAN) },
    { MP_ROM_QSTR(MP_QSTR_PIN_WAKE),            MP_ROM_INT(PYB_SLP_WAKED_BY_GPIO) },
    { MP_ROM_QSTR(MP_QSTR_RTC_WAKE),            MP_ROM_INT(PYB_SLP_WAKED_BY_RTC) },
#endif
};

STATIC MP_DEFINE_CONST_DICT(machine_module_globals, machine_module_globals_table);

const mp_obj_module_t machine_module = {
    .base = { &mp_type_module },
    .globals = (mp_obj_dict_t*)&machine_module_globals,
};