CircuitPython

Source code browser

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
/*
 * This file is part of the MicroPython project, http://micropython.org/
 *
 * The MIT License (MIT)
 *
 * Copyright (c) 2018 Damien P. George
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

#include "py/mperrno.h"
#include "py/mphal.h"
#include "i2c.h"

#if MICROPY_HW_ENABLE_HW_I2C

#define I2C_POLL_TIMEOUT_MS (50)

#if defined(STM32F4)

int i2c_init(i2c_t *i2c, mp_hal_pin_obj_t scl, mp_hal_pin_obj_t sda, uint32_t freq) {
    uint32_t i2c_id = ((uint32_t)i2c - I2C1_BASE) / (I2C2_BASE - I2C1_BASE);

    // Init pins
    if (!mp_hal_pin_config_alt(scl, MP_HAL_PIN_MODE_ALT_OPEN_DRAIN, MP_HAL_PIN_PULL_UP, AF_FN_I2C, i2c_id + 1)) {
        return -MP_EPERM;
    }
    if (!mp_hal_pin_config_alt(sda, MP_HAL_PIN_MODE_ALT_OPEN_DRAIN, MP_HAL_PIN_PULL_UP, AF_FN_I2C, i2c_id + 1)) {
        return -MP_EPERM;
    }

    // Force reset I2C peripheral
    RCC->APB1RSTR |= RCC_APB1RSTR_I2C1RST << i2c_id;
    RCC->APB1RSTR &= ~(RCC_APB1RSTR_I2C1RST << i2c_id);

    // Enable I2C peripheral clock
    RCC->APB1ENR |= RCC_APB1ENR_I2C1EN << i2c_id;
    volatile uint32_t tmp = RCC->APB1ENR; // delay after RCC clock enable
    (void)tmp;

    uint32_t PCLK1 = HAL_RCC_GetPCLK1Freq();

    // Initialise I2C peripheral
    i2c->CR1 = 0;
    i2c->CR2 = PCLK1 / 1000000;
    i2c->OAR1 = 0;
    i2c->OAR2 = 0;

    freq = MIN(freq, 400000);

    // SM: MAX(4, PCLK1 / (F * 2))
    // FM, 16:9 duty: 0xc000 | MAX(1, (PCLK1 / (F * (16 + 9))))
    if (freq <= 100000) {
        i2c->CCR = MAX(4, PCLK1 / (freq * 2));
    } else {
        i2c->CCR = 0xc000 | MAX(1, PCLK1 / (freq * 25));
    }

    // SM: 1000ns / (1/PCLK1) + 1 = PCLK1 * 1e-6 + 1
    // FM: 300ns / (1/PCLK1) + 1 = 300e-3 * PCLK1 * 1e-6 + 1
    if (freq <= 100000) {
        i2c->TRISE = PCLK1 / 1000000 + 1; // 1000ns rise time in SM
    } else {
        i2c->TRISE = PCLK1 / 1000000 * 3 / 10 + 1; // 300ns rise time in FM
    }

    #if defined(I2C_FLTR_ANOFF)
    i2c->FLTR = 0; // analog filter on, digital filter off
    #endif

    return 0;
}

STATIC int i2c_wait_sr1_set(i2c_t *i2c, uint32_t mask) {
    uint32_t t0 = HAL_GetTick();
    while (!(i2c->SR1 & mask)) {
        if (HAL_GetTick() - t0 >= I2C_POLL_TIMEOUT_MS) {
            i2c->CR1 &= ~I2C_CR1_PE;
            return -MP_ETIMEDOUT;
        }
    }
    return 0;
}

STATIC int i2c_wait_stop(i2c_t *i2c) {
    uint32_t t0 = HAL_GetTick();
    while (i2c->CR1 & I2C_CR1_STOP) {
        if (HAL_GetTick() - t0 >= I2C_POLL_TIMEOUT_MS) {
            i2c->CR1 &= ~I2C_CR1_PE;
            return -MP_ETIMEDOUT;
        }
    }
    i2c->CR1 &= ~I2C_CR1_PE;
    return 0;
}

// For write: len = 0, 1 or N
// For read: len = 1, 2 or N; stop = true
int i2c_start_addr(i2c_t *i2c, int rd_wrn, uint16_t addr, size_t next_len, bool stop) {
    if (!(i2c->CR1 & I2C_CR1_PE) && (i2c->SR2 & I2C_SR2_MSL)) {
        // The F4 I2C peripheral can sometimes get into a bad state where it's disabled
        // (PE low) but still an active master (MSL high).  It seems the best way to get
        // out of this is a full reset.
        uint32_t i2c_id = ((uint32_t)i2c - I2C1_BASE) / (I2C2_BASE - I2C1_BASE);
        RCC->APB1RSTR |= RCC_APB1RSTR_I2C1RST << i2c_id;
        RCC->APB1RSTR &= ~(RCC_APB1RSTR_I2C1RST << i2c_id);
    }

    // It looks like it's possible to terminate the reading by sending a
    // START condition instead of STOP condition but we don't support that.
    if (rd_wrn) {
        if (!stop) {
            return -MP_EINVAL;
        }
    }

    // Repurpose OAR1 to hold stop flag
    i2c->OAR1 = stop;

    // Enable peripheral and send START condition
    i2c->CR1 |= I2C_CR1_PE;
    i2c->CR1 |= I2C_CR1_START;

    // Wait for START to be sent
    int ret;
    if ((ret = i2c_wait_sr1_set(i2c, I2C_SR1_SB))) {
        return ret;
    }

    // Send the 7-bit address with read/write bit
    i2c->DR = addr << 1 | rd_wrn;

    // Wait for address to be sent
    if ((ret = i2c_wait_sr1_set(i2c, I2C_SR1_AF | I2C_SR1_ADDR))) {
        return ret;
    }

    // Check if the slave responded or not
    if (i2c->SR1 & I2C_SR1_AF) {
        // Got a NACK
        i2c->CR1 |= I2C_CR1_STOP;
        i2c_wait_stop(i2c); // Don't leak errors from this call
        return -MP_ENODEV;
    }

    if (rd_wrn) {
        // For reading, set up ACK/NACK control based on number of bytes to read (at least 1 byte)
        if (next_len <= 1) {
            // NACK next received byte
            i2c->CR1 &= ~I2C_CR1_ACK;
        } else if (next_len <= 2) {
            // NACK second received byte
            i2c->CR1 |= I2C_CR1_POS;
            i2c->CR1 &= ~I2C_CR1_ACK;
        } else {
            // ACK next received byte
            i2c->CR1 |= I2C_CR1_ACK;
        }
    }

    // Read SR2 to clear SR1_ADDR
    uint32_t sr2 = i2c->SR2;
    (void)sr2;

    return 0;
}

// next_len = 0 or N (>=2)
int i2c_read(i2c_t *i2c, uint8_t *dest, size_t len, size_t next_len) {
    if (len == 0) {
        return -MP_EINVAL;
    }
    if (next_len == 1) {
        return -MP_EINVAL;
    }

    size_t remain = len + next_len;
    if (remain == 1) {
        // Special case
        i2c->CR1 |= I2C_CR1_STOP;
        int ret;
        if ((ret = i2c_wait_sr1_set(i2c, I2C_SR1_RXNE))) {
            return ret;
        }
        *dest = i2c->DR;
    } else {
        for (; len; --len) {
            remain = len + next_len;
            int ret;
            if ((ret = i2c_wait_sr1_set(i2c, I2C_SR1_BTF))) {
                return ret;
            }
            if (remain == 2) {
                // In this case next_len == 0 (it's not allowed to be 1)
                i2c->CR1 |= I2C_CR1_STOP;
                *dest++ = i2c->DR;
                *dest = i2c->DR;
                break;
            } else if (remain == 3) {
                // NACK next received byte
                i2c->CR1 &= ~I2C_CR1_ACK;
            }
            *dest++ = i2c->DR;
        }
    }

    if (!next_len) {
        // We sent a stop above, just wait for it to be finished
        return i2c_wait_stop(i2c);
    }

    return 0;
}

// next_len = 0 or N
int i2c_write(i2c_t *i2c, const uint8_t *src, size_t len, size_t next_len) {
    int ret;
    if ((ret = i2c_wait_sr1_set(i2c, I2C_SR1_AF | I2C_SR1_TXE))) {
        return ret;
    }

    // Write out the data
    int num_acks = 0;
    while (len--) {
        i2c->DR = *src++;
        if ((ret = i2c_wait_sr1_set(i2c, I2C_SR1_AF | I2C_SR1_BTF))) {
            return ret;
        }
        if (i2c->SR1 & I2C_SR1_AF) {
            // Slave did not respond to byte so stop sending
            break;
        }
        ++num_acks;
    }

    if (!next_len) {
        if (i2c->OAR1) {
            // Send a STOP and wait for it to finish
            i2c->CR1 |= I2C_CR1_STOP;
            if ((ret = i2c_wait_stop(i2c))) {
                return ret;
            }
        }
    }

    return num_acks;
}

#elif defined(STM32F0) || defined(STM32F7)

int i2c_init(i2c_t *i2c, mp_hal_pin_obj_t scl, mp_hal_pin_obj_t sda, uint32_t freq) {
    uint32_t i2c_id = ((uint32_t)i2c - I2C1_BASE) / (I2C2_BASE - I2C1_BASE);

    // Init pins
    if (!mp_hal_pin_config_alt(scl, MP_HAL_PIN_MODE_ALT_OPEN_DRAIN, MP_HAL_PIN_PULL_UP, AF_FN_I2C, i2c_id + 1)) {
        return -MP_EPERM;
    }
    if (!mp_hal_pin_config_alt(sda, MP_HAL_PIN_MODE_ALT_OPEN_DRAIN, MP_HAL_PIN_PULL_UP, AF_FN_I2C, i2c_id + 1)) {
        return -MP_EPERM;
    }

    // Enable I2C peripheral clock
    RCC->APB1ENR |= RCC_APB1ENR_I2C1EN << i2c_id;
    volatile uint32_t tmp = RCC->APB1ENR; // delay after RCC clock enable
    (void)tmp;

    // Initialise I2C peripheral
    i2c->CR1 = 0;
    i2c->CR2 = 0;
    i2c->OAR1 = 0;
    i2c->OAR2 = 0;

    // These timing values are for f_I2CCLK=54MHz and are only approximate
    if (freq >= 1000000) {
        i2c->TIMINGR = 0x50100103;
    } else if (freq >= 400000) {
        i2c->TIMINGR = 0x70330309;
    } else if (freq >= 100000) {
        i2c->TIMINGR = 0xb0420f13;
    } else {
        return -MP_EINVAL;
    }

    i2c->TIMEOUTR = 0;

    return 0;
}

STATIC int i2c_wait_cr2_clear(i2c_t *i2c, uint32_t mask) {
    uint32_t t0 = HAL_GetTick();
    while (i2c->CR2 & mask) {
        if (HAL_GetTick() - t0 >= I2C_POLL_TIMEOUT_MS) {
            i2c->CR1 &= ~I2C_CR1_PE;
            return -MP_ETIMEDOUT;
        }
    }
    return 0;
}

STATIC int i2c_wait_isr_set(i2c_t *i2c, uint32_t mask) {
    uint32_t t0 = HAL_GetTick();
    while (!(i2c->ISR & mask)) {
        if (HAL_GetTick() - t0 >= I2C_POLL_TIMEOUT_MS) {
            i2c->CR1 &= ~I2C_CR1_PE;
            return -MP_ETIMEDOUT;
        }
    }
    return 0;
}

// len = 0, 1 or N
int i2c_start_addr(i2c_t *i2c, int rd_wrn, uint16_t addr, size_t len, bool stop) {
    // Enable the peripheral and send the START condition with slave address
    i2c->CR1 |= I2C_CR1_PE;
    i2c->CR2 = stop << I2C_CR2_AUTOEND_Pos
        | (len > 1) << I2C_CR2_RELOAD_Pos
        | (len > 0) << I2C_CR2_NBYTES_Pos
        | rd_wrn << I2C_CR2_RD_WRN_Pos
        | (addr & 0x7f) << 1;
    i2c->CR2 |= I2C_CR2_START;

    // Wait for address to be sent
    int ret;
    if ((ret = i2c_wait_cr2_clear(i2c, I2C_CR2_START))) {
        return ret;
    }

    // Check if the slave responded or not
    if (i2c->ISR & I2C_ISR_NACKF) {
        // If we get a NACK then I2C periph unconditionally sends a STOP
        i2c_wait_isr_set(i2c, I2C_ISR_STOPF); // Don't leak errors from this call
        i2c->CR1 &= ~I2C_CR1_PE;
        return -MP_ENODEV;
    }

    // Repurpose OAR1 to indicate that we loaded CR2
    i2c->OAR1 = 1;

    return 0;
}

STATIC int i2c_check_stop(i2c_t *i2c) {
    if (i2c->CR2 & I2C_CR2_AUTOEND) {
        // Wait for the STOP condition and then disable the peripheral
        int ret;
        if ((ret = i2c_wait_isr_set(i2c, I2C_ISR_STOPF))) {
            return ret;
        }
        i2c->CR1 &= ~I2C_CR1_PE;
    }

    return 0;
}

// next_len = 0 or N
int i2c_read(i2c_t *i2c, uint8_t *dest, size_t len, size_t next_len) {
    if (i2c->OAR1) {
        i2c->OAR1 = 0;
    } else {
        goto load_cr2;
    }

    // Read in the data
    while (len--) {
        int ret;
        if ((ret = i2c_wait_isr_set(i2c, I2C_ISR_RXNE))) {
            return ret;
        }
        *dest++ = i2c->RXDR;
    load_cr2:
        if (len) {
            i2c->CR2 = (i2c->CR2 & I2C_CR2_AUTOEND)
                | (len + next_len > 1) << I2C_CR2_RELOAD_Pos
                | 1 << I2C_CR2_NBYTES_Pos;
        }
    }

    if (!next_len) {
        int ret;
        if ((ret = i2c_check_stop(i2c))) {
            return ret;
        }
    }

    return 0;
}

// next_len = 0 or N
int i2c_write(i2c_t *i2c, const uint8_t *src, size_t len, size_t next_len) {
    int num_acks = 0;

    if (i2c->OAR1) {
        i2c->OAR1 = 0;
    } else {
        goto load_cr2;
    }

    // Write out the data
    while (len--) {
        int ret;
        if ((ret = i2c_wait_isr_set(i2c, I2C_ISR_TXE))) {
            return ret;
        }
        i2c->TXDR = *src++;
        if ((ret = i2c_wait_isr_set(i2c, I2C_ISR_TCR | I2C_ISR_TC | I2C_ISR_STOPF))) {
            return ret;
        }
        uint32_t isr = i2c->ISR;
        if (isr & I2C_ISR_NACKF) {
            // Slave did not respond to byte so stop sending
            if (!(isr & I2C_ISR_TXE)) {
                // The TXDR is still full so the byte previous to that wasn't actually ACK'd
                --num_acks;
            }
            break;
        }
        ++num_acks;
    load_cr2:
        if (len) {
            i2c->CR2 = (i2c->CR2 & I2C_CR2_AUTOEND)
                | (len + next_len > 1) << I2C_CR2_RELOAD_Pos
                | 1 << I2C_CR2_NBYTES_Pos;
        }
    }

    if (!next_len) {
        int ret;
        if ((ret = i2c_check_stop(i2c))) {
            return ret;
        }
    }

    return num_acks;
}

#endif

#if defined(STM32F0) || defined(STM32F4) || defined(STM32F7)

int i2c_readfrom(i2c_t *i2c, uint16_t addr, uint8_t *dest, size_t len, bool stop) {
    int ret;
    if ((ret = i2c_start_addr(i2c, 1, addr, len, stop))) {
        return ret;
    }
    return i2c_read(i2c, dest, len, 0);
}

int i2c_writeto(i2c_t *i2c, uint16_t addr, const uint8_t *src, size_t len, bool stop) {
    int ret;
    if ((ret = i2c_start_addr(i2c, 0, addr, len, stop))) {
        return ret;
    }
    return i2c_write(i2c, src, len, 0);
}

#endif

#endif // MICROPY_HW_ENABLE_HW_I2C