CircuitPython

Source code browser

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
/*
 * This file is part of the MicroPython project, http://micropython.org/
 *
 * The MIT License (MIT)
 *
 * Copyright (c) 2013-2018 Damien P. George
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

#include <stdio.h>
#include <string.h>

#include "py/runtime.h"
#include "py/stackctrl.h"
#include "py/gc.h"
#include "py/mphal.h"
#include "lib/mp-readline/readline.h"
#include "lib/utils/pyexec.h"
#include "lib/oofatfs/ff.h"
#include "lwip/init.h"
#include "extmod/vfs.h"
#include "extmod/vfs_fat.h"

#include "systick.h"
#include "pendsv.h"
#include "pybthread.h"
#include "gccollect.h"
#include "modmachine.h"
#include "i2c.h"
#include "spi.h"
#include "uart.h"
#include "timer.h"
#include "led.h"
#include "pin.h"
#include "extint.h"
#include "usrsw.h"
#include "usb.h"
#include "rtc.h"
#include "storage.h"
#include "sdcard.h"
#include "rng.h"
#include "accel.h"
#include "servo.h"
#include "dac.h"
#include "can.h"
#include "modnetwork.h"

void SystemClock_Config(void);

pyb_thread_t pyb_thread_main;
fs_user_mount_t fs_user_mount_flash;

void flash_error(int n) {
    for (int i = 0; i < n; i++) {
        led_state(PYB_LED_RED, 1);
        led_state(PYB_LED_GREEN, 0);
        mp_hal_delay_ms(250);
        led_state(PYB_LED_RED, 0);
        led_state(PYB_LED_GREEN, 1);
        mp_hal_delay_ms(250);
    }
    led_state(PYB_LED_GREEN, 0);
}

void NORETURN __fatal_error(const char *msg) {
    for (volatile uint delay = 0; delay < 10000000; delay++) {
    }
    led_state(1, 1);
    led_state(2, 1);
    led_state(3, 1);
    led_state(4, 1);
    mp_hal_stdout_tx_strn("\nFATAL ERROR:\n", 14);
    mp_hal_stdout_tx_strn(msg, strlen(msg));
    for (uint i = 0;;) {
        led_toggle(((i++) & 3) + 1);
        for (volatile uint delay = 0; delay < 10000000; delay++) {
        }
        if (i >= 16) {
            // to conserve power
            __WFI();
        }
    }
}

void nlr_jump_fail(void *val) {
    printf("FATAL: uncaught exception %p\n", val);
    mp_obj_print_exception(&mp_plat_print, (mp_obj_t)val);
    __fatal_error("");
}

#ifndef NDEBUG
void MP_WEAK __assert_func(const char *file, int line, const char *func, const char *expr) {
    (void)func;
    printf("Assertion '%s' failed, at file %s:%d\n", expr, file, line);
    __fatal_error("");
}
#endif

STATIC mp_obj_t pyb_main(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
    static const mp_arg_t allowed_args[] = {
        { MP_QSTR_opt, MP_ARG_INT, {.u_int = 0} }
    };

    if (MP_OBJ_IS_STR(pos_args[0])) {
        MP_STATE_PORT(pyb_config_main) = pos_args[0];

        // parse args
        mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
        mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
        MP_STATE_VM(mp_optimise_value) = args[0].u_int;
    }
    return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_KW(pyb_main_obj, 1, pyb_main);

#if MICROPY_HW_ENABLE_STORAGE
static const char fresh_boot_py[] =
"# boot.py -- run on boot-up\r\n"
"# can run arbitrary Python, but best to keep it minimal\r\n"
"\r\n"
"import machine\r\n"
"import pyb\r\n"
"#pyb.main('main.py') # main script to run after this one\r\n"
#if MICROPY_HW_ENABLE_USB
"#pyb.usb_mode('VCP+MSC') # act as a serial and a storage device\r\n"
"#pyb.usb_mode('VCP+HID') # act as a serial device and a mouse\r\n"
#endif
;

static const char fresh_main_py[] =
"# main.py -- put your code here!\r\n"
;

static const char fresh_pybcdc_inf[] =
#include "genhdr/pybcdc_inf.h"
;

static const char fresh_readme_txt[] =
"This is a MicroPython board\r\n"
"\r\n"
"You can get started right away by writing your Python code in 'main.py'.\r\n"
"\r\n"
"For a serial prompt:\r\n"
" - Windows: you need to go to 'Device manager', right click on the unknown device,\r\n"
"   then update the driver software, using the 'pybcdc.inf' file found on this drive.\r\n"
"   Then use a terminal program like Hyperterminal or putty.\r\n"
" - Mac OS X: use the command: screen /dev/tty.usbmodem*\r\n"
" - Linux: use the command: screen /dev/ttyACM0\r\n"
"\r\n"
"Please visit http://micropython.org/help/ for further help.\r\n"
;

// avoid inlining to avoid stack usage within main()
MP_NOINLINE STATIC bool init_flash_fs(uint reset_mode) {
    // init the vfs object
    fs_user_mount_t *vfs_fat = &fs_user_mount_flash;
    vfs_fat->flags = 0;
    pyb_flash_init_vfs(vfs_fat);

    // try to mount the flash
    FRESULT res = f_mount(&vfs_fat->fatfs);

    if (reset_mode == 3 || res == FR_NO_FILESYSTEM) {
        // no filesystem, or asked to reset it, so create a fresh one

        // LED on to indicate creation of LFS
        led_state(PYB_LED_GREEN, 1);
        uint32_t start_tick = HAL_GetTick();

        uint8_t working_buf[_MAX_SS];
        res = f_mkfs(&vfs_fat->fatfs, FM_FAT, 0, working_buf, sizeof(working_buf));
        if (res == FR_OK) {
            // success creating fresh LFS
        } else {
            printf("PYB: can't create flash filesystem\n");
            return false;
        }

        // set label
        f_setlabel(&vfs_fat->fatfs, MICROPY_HW_FLASH_FS_LABEL);

        // create empty main.py
        FIL fp;
        f_open(&vfs_fat->fatfs, &fp, "/main.py", FA_WRITE | FA_CREATE_ALWAYS);
        UINT n;
        f_write(&fp, fresh_main_py, sizeof(fresh_main_py) - 1 /* don't count null terminator */, &n);
        // TODO check we could write n bytes
        f_close(&fp);

        // create .inf driver file
        f_open(&vfs_fat->fatfs, &fp, "/pybcdc.inf", FA_WRITE | FA_CREATE_ALWAYS);
        f_write(&fp, fresh_pybcdc_inf, sizeof(fresh_pybcdc_inf) - 1 /* don't count null terminator */, &n);
        f_close(&fp);

        // create readme file
        f_open(&vfs_fat->fatfs, &fp, "/README.txt", FA_WRITE | FA_CREATE_ALWAYS);
        f_write(&fp, fresh_readme_txt, sizeof(fresh_readme_txt) - 1 /* don't count null terminator */, &n);
        f_close(&fp);

        // keep LED on for at least 200ms
        sys_tick_wait_at_least(start_tick, 200);
        led_state(PYB_LED_GREEN, 0);
    } else if (res == FR_OK) {
        // mount sucessful
    } else {
    fail:
        printf("PYB: can't mount flash\n");
        return false;
    }

    // mount the flash device (there should be no other devices mounted at this point)
    // we allocate this structure on the heap because vfs->next is a root pointer
    mp_vfs_mount_t *vfs = m_new_obj_maybe(mp_vfs_mount_t);
    if (vfs == NULL) {
        goto fail;
    }
    vfs->str = "/flash";
    vfs->len = 6;
    vfs->obj = MP_OBJ_FROM_PTR(vfs_fat);
    vfs->next = NULL;
    MP_STATE_VM(vfs_mount_table) = vfs;

    // The current directory is used as the boot up directory.
    // It is set to the internal flash filesystem by default.
    MP_STATE_PORT(vfs_cur) = vfs;

    // Make sure we have a /flash/boot.py.  Create it if needed.
    FILINFO fno;
    res = f_stat(&vfs_fat->fatfs, "/boot.py", &fno);
    if (res != FR_OK) {
        // doesn't exist, create fresh file

        // LED on to indicate creation of boot.py
        led_state(PYB_LED_GREEN, 1);
        uint32_t start_tick = HAL_GetTick();

        FIL fp;
        f_open(&vfs_fat->fatfs, &fp, "/boot.py", FA_WRITE | FA_CREATE_ALWAYS);
        UINT n;
        f_write(&fp, fresh_boot_py, sizeof(fresh_boot_py) - 1 /* don't count null terminator */, &n);
        // TODO check we could write n bytes
        f_close(&fp);

        // keep LED on for at least 200ms
        sys_tick_wait_at_least(start_tick, 200);
        led_state(PYB_LED_GREEN, 0);
    }

    return true;
}
#endif

#if MICROPY_HW_HAS_SDCARD
STATIC bool init_sdcard_fs(void) {
    bool first_part = true;
    for (int part_num = 1; part_num <= 4; ++part_num) {
        // create vfs object
        fs_user_mount_t *vfs_fat = m_new_obj_maybe(fs_user_mount_t);
        mp_vfs_mount_t *vfs = m_new_obj_maybe(mp_vfs_mount_t);
        if (vfs == NULL || vfs_fat == NULL) {
            break;
        }
        vfs_fat->flags = FSUSER_FREE_OBJ;
        sdcard_init_vfs(vfs_fat, part_num);

        // try to mount the partition
        FRESULT res = f_mount(&vfs_fat->fatfs);

        if (res != FR_OK) {
            // couldn't mount
            m_del_obj(fs_user_mount_t, vfs_fat);
            m_del_obj(mp_vfs_mount_t, vfs);
        } else {
            // mounted via FatFs, now mount the SD partition in the VFS
            if (first_part) {
                // the first available partition is traditionally called "sd" for simplicity
                vfs->str = "/sd";
                vfs->len = 3;
            } else {
                // subsequent partitions are numbered by their index in the partition table
                if (part_num == 2) {
                    vfs->str = "/sd2";
                } else if (part_num == 2) {
                    vfs->str = "/sd3";
                } else {
                    vfs->str = "/sd4";
                }
                vfs->len = 4;
            }
            vfs->obj = MP_OBJ_FROM_PTR(vfs_fat);
            vfs->next = NULL;
            for (mp_vfs_mount_t **m = &MP_STATE_VM(vfs_mount_table);; m = &(*m)->next) {
                if (*m == NULL) {
                    *m = vfs;
                    break;
                }
            }

            #if MICROPY_HW_ENABLE_USB
            if (pyb_usb_storage_medium == PYB_USB_STORAGE_MEDIUM_NONE) {
                // if no USB MSC medium is selected then use the SD card
                pyb_usb_storage_medium = PYB_USB_STORAGE_MEDIUM_SDCARD;
            }
            #endif

            #if MICROPY_HW_ENABLE_USB
            // only use SD card as current directory if that's what the USB medium is
            if (pyb_usb_storage_medium == PYB_USB_STORAGE_MEDIUM_SDCARD)
            #endif
            {
                if (first_part) {
                    // use SD card as current directory
                    MP_STATE_PORT(vfs_cur) = vfs;
                }
            }
            first_part = false;
        }
    }

    if (first_part) {
        printf("PYB: can't mount SD card\n");
        return false;
    } else {
        return true;
    }
}
#endif

#if !MICROPY_HW_USES_BOOTLOADER
STATIC uint update_reset_mode(uint reset_mode) {
    #if MICROPY_HW_HAS_SWITCH
    if (switch_get()) {

        // The original method used on the pyboard is appropriate if you have 2
        // or more LEDs.
        #if defined(MICROPY_HW_LED2)
        for (uint i = 0; i < 3000; i++) {
            if (!switch_get()) {
                break;
            }
            mp_hal_delay_ms(20);
            if (i % 30 == 29) {
                if (++reset_mode > 3) {
                    reset_mode = 1;
                }
                led_state(2, reset_mode & 1);
                led_state(3, reset_mode & 2);
                led_state(4, reset_mode & 4);
            }
        }
        // flash the selected reset mode
        for (uint i = 0; i < 6; i++) {
            led_state(2, 0);
            led_state(3, 0);
            led_state(4, 0);
            mp_hal_delay_ms(50);
            led_state(2, reset_mode & 1);
            led_state(3, reset_mode & 2);
            led_state(4, reset_mode & 4);
            mp_hal_delay_ms(50);
        }
        mp_hal_delay_ms(400);

        #elif defined(MICROPY_HW_LED1)

        // For boards with only a single LED, we'll flash that LED the
        // appropriate number of times, with a pause between each one
        for (uint i = 0; i < 10; i++) {
            led_state(1, 0);
            for (uint j = 0; j < reset_mode; j++) {
                if (!switch_get()) {
                    break;
                }
                led_state(1, 1);
                mp_hal_delay_ms(100);
                led_state(1, 0);
                mp_hal_delay_ms(200);
            }
            mp_hal_delay_ms(400);
            if (!switch_get()) {
                break;
            }
            if (++reset_mode > 3) {
                reset_mode = 1;
            }
        }
        // Flash the selected reset mode
        for (uint i = 0; i < 2; i++) {
            for (uint j = 0; j < reset_mode; j++) {
                led_state(1, 1);
                mp_hal_delay_ms(100);
                led_state(1, 0);
                mp_hal_delay_ms(200);
            }
            mp_hal_delay_ms(400);
        }
        #else
        #error Need a reset mode update method
        #endif
    }
    #endif
    return reset_mode;
}
#endif

void stm32_main(uint32_t reset_mode) {
    // Enable caches and prefetch buffers

    #if defined(STM32F4)

    #if INSTRUCTION_CACHE_ENABLE
    __HAL_FLASH_INSTRUCTION_CACHE_ENABLE();
    #endif
    #if DATA_CACHE_ENABLE
    __HAL_FLASH_DATA_CACHE_ENABLE();
    #endif
    #if PREFETCH_ENABLE
    __HAL_FLASH_PREFETCH_BUFFER_ENABLE();
    #endif

    #elif defined(STM32F7) || defined(STM32H7)

    #if ART_ACCLERATOR_ENABLE
    __HAL_FLASH_ART_ENABLE();
    #endif

    SCB_EnableICache();
    SCB_EnableDCache();

    #elif defined(STM32L4)

    #if !INSTRUCTION_CACHE_ENABLE
    __HAL_FLASH_INSTRUCTION_CACHE_DISABLE();
    #endif
    #if !DATA_CACHE_ENABLE
    __HAL_FLASH_DATA_CACHE_DISABLE();
    #endif
    #if PREFETCH_ENABLE
    __HAL_FLASH_PREFETCH_BUFFER_ENABLE();
    #endif

    #endif

    #if __CORTEX_M >= 0x03
    // Set the priority grouping
    NVIC_SetPriorityGrouping(NVIC_PRIORITYGROUP_4);
    #endif

    // SysTick is needed by HAL_RCC_ClockConfig (called in SystemClock_Config)
    HAL_InitTick(TICK_INT_PRIORITY);

    // set the system clock to be HSE
    SystemClock_Config();

    // enable GPIO clocks
    __HAL_RCC_GPIOA_CLK_ENABLE();
    __HAL_RCC_GPIOB_CLK_ENABLE();
    __HAL_RCC_GPIOC_CLK_ENABLE();
    __HAL_RCC_GPIOD_CLK_ENABLE();

    #if defined(STM32F4) ||  defined(STM32F7)
        #if defined(__HAL_RCC_DTCMRAMEN_CLK_ENABLE)
        // The STM32F746 doesn't really have CCM memory, but it does have DTCM,
        // which behaves more or less like normal SRAM.
        __HAL_RCC_DTCMRAMEN_CLK_ENABLE();
        #elif defined(CCMDATARAM_BASE)
        // enable the CCM RAM
        __HAL_RCC_CCMDATARAMEN_CLK_ENABLE();
        #endif
    #elif defined(STM32H7)
        // Enable D2 SRAM1/2/3 clocks.
        __HAL_RCC_D2SRAM1_CLK_ENABLE();
        __HAL_RCC_D2SRAM2_CLK_ENABLE();
        __HAL_RCC_D2SRAM3_CLK_ENABLE();
    #endif


    #if defined(MICROPY_BOARD_EARLY_INIT)
    MICROPY_BOARD_EARLY_INIT();
    #endif

    // basic sub-system init
    #if MICROPY_PY_THREAD
    pyb_thread_init(&pyb_thread_main);
    #endif
    pendsv_init();
    led_init();
    #if MICROPY_HW_HAS_SWITCH
    switch_init0();
    #endif
    machine_init();
    #if MICROPY_HW_ENABLE_RTC
    rtc_init_start(false);
    #endif
    spi_init0();
    #if MICROPY_PY_PYB_LEGACY && MICROPY_HW_ENABLE_HW_I2C
    i2c_init0();
    #endif
    #if MICROPY_HW_HAS_SDCARD
    sdcard_init();
    #endif
    #if MICROPY_HW_ENABLE_STORAGE
    storage_init();
    #endif
    #if MICROPY_PY_LWIP
    // lwIP doesn't allow to reinitialise itself by subsequent calls to this function
    // because the system timeout list (next_timeout) is only ever reset by BSS clearing.
    // So for now we only init the lwIP stack once on power-up.
    lwip_init();
    #endif

soft_reset:

    #if defined(MICROPY_HW_LED2)
    led_state(1, 0);
    led_state(2, 1);
    #else
    led_state(1, 1);
    led_state(2, 0);
    #endif
    led_state(3, 0);
    led_state(4, 0);

    #if !MICROPY_HW_USES_BOOTLOADER
    // check if user switch held to select the reset mode
    reset_mode = update_reset_mode(1);
    #endif

    // Python threading init
    #if MICROPY_PY_THREAD
    mp_thread_init();
    #endif

    // Stack limit should be less than real stack size, so we have a chance
    // to recover from limit hit.  (Limit is measured in bytes.)
    // Note: stack control relies on main thread being initialised above
    mp_stack_set_top(&_estack);
    mp_stack_set_limit((char*)&_estack - (char*)&_heap_end - 1024);

    // GC init
    gc_init(&_heap_start, &_heap_end);

    #if MICROPY_ENABLE_PYSTACK
    static mp_obj_t pystack[384];
    mp_pystack_init(pystack, &pystack[384]);
    #endif

    // MicroPython init
    mp_init();
    mp_obj_list_init(mp_sys_path, 0);
    mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR_)); // current dir (or base dir of the script)
    mp_obj_list_init(mp_sys_argv, 0);

    // Initialise low-level sub-systems.  Here we need to very basic things like
    // zeroing out memory and resetting any of the sub-systems.  Following this
    // we can run Python scripts (eg boot.py), but anything that is configurable
    // by boot.py must be set after boot.py is run.

    readline_init0();
    pin_init0();
    extint_init0();
    timer_init0();
    uart_init0();

    // Define MICROPY_HW_UART_REPL to be PYB_UART_6 and define
    // MICROPY_HW_UART_REPL_BAUD in your mpconfigboard.h file if you want a
    // REPL on a hardware UART as well as on USB VCP
    #if defined(MICROPY_HW_UART_REPL)
    {
        mp_obj_t args[2] = {
            MP_OBJ_NEW_SMALL_INT(MICROPY_HW_UART_REPL),
            MP_OBJ_NEW_SMALL_INT(MICROPY_HW_UART_REPL_BAUD),
        };
        MP_STATE_PORT(pyb_stdio_uart) = pyb_uart_type.make_new((mp_obj_t)&pyb_uart_type, MP_ARRAY_SIZE(args), 0, args);
        uart_attach_to_repl(MP_STATE_PORT(pyb_stdio_uart), true);
    }
    #else
    MP_STATE_PORT(pyb_stdio_uart) = NULL;
    #endif

    #if MICROPY_HW_ENABLE_CAN
    can_init0();
    #endif

    #if MICROPY_HW_ENABLE_USB
    pyb_usb_init0();
    #endif

    // Initialise the local flash filesystem.
    // Create it if needed, mount in on /flash, and set it as current dir.
    bool mounted_flash = false;
    #if MICROPY_HW_ENABLE_STORAGE
    mounted_flash = init_flash_fs(reset_mode);
    #endif

    bool mounted_sdcard = false;
    #if MICROPY_HW_HAS_SDCARD
    // if an SD card is present then mount it on /sd/
    if (sdcard_is_present()) {
        // if there is a file in the flash called "SKIPSD", then we don't mount the SD card
        if (!mounted_flash || f_stat(&fs_user_mount_flash.fatfs, "/SKIPSD", NULL) != FR_OK) {
            mounted_sdcard = init_sdcard_fs();
        }
    }
    #endif

    #if MICROPY_HW_ENABLE_USB
    // if the SD card isn't used as the USB MSC medium then use the internal flash
    if (pyb_usb_storage_medium == PYB_USB_STORAGE_MEDIUM_NONE) {
        pyb_usb_storage_medium = PYB_USB_STORAGE_MEDIUM_FLASH;
    }
    #endif

    // set sys.path based on mounted filesystems (/sd is first so it can override /flash)
    if (mounted_sdcard) {
        mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR__slash_sd));
        mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR__slash_sd_slash_lib));
    }
    if (mounted_flash) {
        mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR__slash_flash));
        mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR__slash_flash_slash_lib));
    }

    // reset config variables; they should be set by boot.py
    MP_STATE_PORT(pyb_config_main) = MP_OBJ_NULL;

    // run boot.py, if it exists
    // TODO perhaps have pyb.reboot([bootpy]) function to soft-reboot and execute custom boot.py
    if (reset_mode == 1 || reset_mode == 3) {
        const char *boot_py = "boot.py";
        mp_import_stat_t stat = mp_import_stat(boot_py);
        if (stat == MP_IMPORT_STAT_FILE) {
            int ret = pyexec_file(boot_py);
            if (ret & PYEXEC_FORCED_EXIT) {
                goto soft_reset_exit;
            }
            if (!ret) {
                flash_error(4);
            }
        }
    }

    // turn boot-up LEDs off
    #if !defined(MICROPY_HW_LED2)
    // If there is only one LED on the board then it's used to signal boot-up
    // and so we turn it off here.  Otherwise LED(1) is used to indicate dirty
    // flash cache and so we shouldn't change its state.
    led_state(1, 0);
    #endif
    led_state(2, 0);
    led_state(3, 0);
    led_state(4, 0);

    // Now we initialise sub-systems that need configuration from boot.py,
    // or whose initialisation can be safely deferred until after running
    // boot.py.

    #if MICROPY_HW_ENABLE_USB
    // init USB device to default setting if it was not already configured
    if (!(pyb_usb_flags & PYB_USB_FLAG_USB_MODE_CALLED)) {
        pyb_usb_dev_init(USBD_VID, USBD_PID_CDC_MSC, USBD_MODE_CDC_MSC, NULL);
    }
    #endif

    #if MICROPY_HW_HAS_MMA7660
    // MMA accel: init and reset
    accel_init();
    #endif

    #if MICROPY_HW_ENABLE_SERVO
    servo_init();
    #endif

    #if MICROPY_HW_ENABLE_DAC
    dac_init();
    #endif

    #if MICROPY_PY_NETWORK
    mod_network_init();
    #endif

    // At this point everything is fully configured and initialised.

    // Run the main script from the current directory.
    if ((reset_mode == 1 || reset_mode == 3) && pyexec_mode_kind == PYEXEC_MODE_FRIENDLY_REPL) {
        const char *main_py;
        if (MP_STATE_PORT(pyb_config_main) == MP_OBJ_NULL) {
            main_py = "main.py";
        } else {
            main_py = mp_obj_str_get_str(MP_STATE_PORT(pyb_config_main));
        }
        mp_import_stat_t stat = mp_import_stat(main_py);
        if (stat == MP_IMPORT_STAT_FILE) {
            int ret = pyexec_file(main_py);
            if (ret & PYEXEC_FORCED_EXIT) {
                goto soft_reset_exit;
            }
            if (!ret) {
                flash_error(3);
            }
        }
    }

    // Main script is finished, so now go into REPL mode.
    // The REPL mode can change, or it can request a soft reset.
    for (;;) {
        if (pyexec_mode_kind == PYEXEC_MODE_RAW_REPL) {
            if (pyexec_raw_repl() != 0) {
                break;
            }
        } else {
            if (pyexec_friendly_repl() != 0) {
                break;
            }
        }
    }

soft_reset_exit:

    // soft reset

    #if MICROPY_HW_ENABLE_STORAGE
    printf("PYB: sync filesystems\n");
    storage_flush();
    #endif

    printf("PYB: soft reboot\n");
    #if MICROPY_PY_NETWORK
    mod_network_deinit();
    #endif
    timer_deinit();
    uart_deinit();
    #if MICROPY_HW_ENABLE_CAN
    can_deinit();
    #endif
    machine_deinit();

    #if MICROPY_PY_THREAD
    pyb_thread_deinit();
    #endif

    gc_sweep_all();

    goto soft_reset;
}