CircuitPython

Source code browser

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
/*
 * This file is part of the MicroPython project, http://micropython.org/
 *
 * The MIT License (MIT)
 *
 * Copyright (c) 2017-2018 Damien P. George
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

#include <stdio.h>
#include <string.h>

#include "py/mphal.h"
#include "extmod/crypto-algorithms/sha256.c"
#include "usbd_core.h"
#include "storage.h"
#include "i2cslave.h"

// Using polling is about 10% faster than not using it (and using IRQ instead)
// This DFU code with polling runs in about 70% of the time of the ST bootloader
#define USE_USB_POLLING (1)

// Using cache probably won't make it faster because we run at 48MHz, and best
// to keep the MCU config as minimal as possible.
#define USE_CACHE (0)

// IRQ priorities (encoded values suitable for NVIC_SetPriority)
#define IRQ_PRI_SYSTICK (NVIC_EncodePriority(NVIC_PRIORITYGROUP_4, 0, 0))
#define IRQ_PRI_I2C (NVIC_EncodePriority(NVIC_PRIORITYGROUP_4, 1, 0))

// Configure PLL to give a 48MHz CPU freq
#define CORE_PLL_FREQ (48000000)
#undef MICROPY_HW_CLK_PLLM
#undef MICROPY_HW_CLK_PLLN
#undef MICROPY_HW_CLK_PLLP
#undef MICROPY_HW_CLK_PLLQ
#define MICROPY_HW_CLK_PLLM (HSE_VALUE / 1000000)
#define MICROPY_HW_CLK_PLLN (192)
#define MICROPY_HW_CLK_PLLP (RCC_PLLP_DIV4)
#define MICROPY_HW_CLK_PLLQ (4)

// Work out which USB device to use for the USB DFU interface
#if !defined(MICROPY_HW_USB_MAIN_DEV)
#if defined(MICROPY_HW_USB_FS)
#define MICROPY_HW_USB_MAIN_DEV (USB_PHY_FS_ID)
#elif defined(MICROPY_HW_USB_HS) && defined(MICROPY_HW_USB_HS_IN_FS)
#define MICROPY_HW_USB_MAIN_DEV (USB_PHY_HS_ID)
#else
#error Unable to determine proper MICROPY_HW_USB_MAIN_DEV to use
#endif
#endif

// These bits are used to detect valid application firmware at APPLICATION_ADDR
#define APP_VALIDITY_BITS (0x00000003)

#define MP_ARRAY_SIZE(a) (sizeof(a) / sizeof((a)[0]))

static void do_reset(void);

static uint32_t get_le32(const uint8_t *b) {
    return b[0] | b[1] << 8 | b[2] << 16 | b[3] << 24;
}

void mp_hal_delay_us(mp_uint_t usec) {
    // use a busy loop for the delay
    // sys freq is always a multiple of 2MHz, so division here won't lose precision
    const uint32_t ucount = CORE_PLL_FREQ / 2000000 * usec / 2;
    for (uint32_t count = 0; ++count <= ucount;) {
    }
}

static volatile uint32_t systick_ms;

void mp_hal_delay_ms(mp_uint_t ms) {
    if (__get_PRIMASK() == 0) {
        // IRQs enabled, use systick
        if (ms != 0 && ms != (mp_uint_t)-1) {
            ++ms; // account for the fact that systick_ms may roll over immediately
        }
        uint32_t start = systick_ms;
        while (systick_ms - start < ms) {
            __WFI();
        }
    } else {
        // IRQs disabled, so need to use a busy loop for the delay.
        // To prevent possible overflow of the counter we use a double loop.
        const uint32_t count_1ms = 16000000 / 8000;
        for (uint32_t i = 0; i < ms; i++) {
            for (volatile uint32_t count = 0; ++count <= count_1ms;) {
            }
        }
    }
}

// Needed by parts of the HAL
uint32_t HAL_GetTick(void) {
    return systick_ms;
}

// Needed by parts of the HAL
void HAL_Delay(uint32_t ms) {
    mp_hal_delay_ms(ms);
}

static void __fatal_error(const char *msg) {
    NVIC_SystemReset();
    for (;;) {
    }
}

/******************************************************************************/
// CLOCK

#if defined(STM32F4) || defined(STM32F7)

#define CONFIG_RCC_CR_1ST (RCC_CR_HSION)
#define CONFIG_RCC_CR_2ND (RCC_CR_HSEON || RCC_CR_CSSON || RCC_CR_PLLON)
#define CONFIG_RCC_PLLCFGR (0x24003010)

#else
#error Unknown processor
#endif

void SystemInit(void) {
    // Set HSION bit
    RCC->CR |= CONFIG_RCC_CR_1ST;

    // Reset CFGR register
    RCC->CFGR = 0x00000000;

    // Reset HSEON, CSSON and PLLON bits
    RCC->CR &= ~CONFIG_RCC_CR_2ND;

    // Reset PLLCFGR register
    RCC->PLLCFGR = CONFIG_RCC_PLLCFGR;

    // Reset HSEBYP bit
    RCC->CR &= (uint32_t)0xFFFBFFFF;

    // Disable all interrupts
    RCC->CIR = 0x00000000;

    // Set location of vector table
    SCB->VTOR = FLASH_BASE;

    // Enable 8-byte stack alignment for IRQ handlers, in accord with EABI
    SCB->CCR |= SCB_CCR_STKALIGN_Msk;
}

void systick_init(void) {
    // Configure SysTick as 1ms ticker
    SysTick_Config(SystemCoreClock / 1000);
    NVIC_SetPriority(SysTick_IRQn, IRQ_PRI_SYSTICK);
}

void SystemClock_Config(void) {
    // This function assumes that HSI is used as the system clock (see RCC->CFGR, SWS bits)

    // Enable Power Control clock
    __HAL_RCC_PWR_CLK_ENABLE();

    // Reduce power consumption
    __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);

    // Turn HSE on
    __HAL_RCC_HSE_CONFIG(RCC_HSE_ON);
    while (__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) == RESET) {
    }

    // Disable PLL
    __HAL_RCC_PLL_DISABLE();
    while (__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) != RESET) {
    }

    // Configure PLL factors and source
    RCC->PLLCFGR =
        1 << RCC_PLLCFGR_PLLSRC_Pos // HSE selected as PLL source
        | MICROPY_HW_CLK_PLLM << RCC_PLLCFGR_PLLM_Pos
        | MICROPY_HW_CLK_PLLN << RCC_PLLCFGR_PLLN_Pos
        | ((MICROPY_HW_CLK_PLLP >> 1) - 1) << RCC_PLLCFGR_PLLP_Pos
        | MICROPY_HW_CLK_PLLQ << RCC_PLLCFGR_PLLQ_Pos
        #ifdef RCC_PLLCFGR_PLLR
        | 2 << RCC_PLLCFGR_PLLR_Pos // default PLLR value of 2
        #endif
        ;

    // Enable PLL
    __HAL_RCC_PLL_ENABLE();
    while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) == RESET) {
    }

    #if !defined(MICROPY_HW_FLASH_LATENCY)
    #define MICROPY_HW_FLASH_LATENCY FLASH_LATENCY_1
    #endif

    // Increase latency before changing clock
    if (MICROPY_HW_FLASH_LATENCY > (FLASH->ACR & FLASH_ACR_LATENCY)) {
        __HAL_FLASH_SET_LATENCY(MICROPY_HW_FLASH_LATENCY);
    }

    // Configure AHB divider
    MODIFY_REG(RCC->CFGR, RCC_CFGR_HPRE, RCC_SYSCLK_DIV1);

    // Configure SYSCLK source from PLL
    __HAL_RCC_SYSCLK_CONFIG(RCC_SYSCLKSOURCE_PLLCLK);
    while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_PLLCLK) {
    }

    // Decrease latency after changing clock
    if (MICROPY_HW_FLASH_LATENCY < (FLASH->ACR & FLASH_ACR_LATENCY)) {
        __HAL_FLASH_SET_LATENCY(MICROPY_HW_FLASH_LATENCY);
    }

    // Set APB clock dividers
    MODIFY_REG(RCC->CFGR, RCC_CFGR_PPRE1, RCC_HCLK_DIV4);
    MODIFY_REG(RCC->CFGR, RCC_CFGR_PPRE2, RCC_HCLK_DIV2 << 3);

    // Update clock value and reconfigure systick now that the frequency changed
    SystemCoreClock = CORE_PLL_FREQ;
    systick_init();

    #if defined(STM32F7)
    // The DFU bootloader changes the clocksource register from its default power
    // on reset value, so we set it back here, so the clocksources are the same
    // whether we were started from DFU or from a power on reset.
    RCC->DCKCFGR2 = 0;
    #endif
}

// Needed by HAL_PCD_IRQHandler
uint32_t HAL_RCC_GetHCLKFreq(void) {
    return SystemCoreClock;
}

/******************************************************************************/
// GPIO

void mp_hal_pin_config(mp_hal_pin_obj_t port_pin, uint32_t mode, uint32_t pull, uint32_t alt) {
    GPIO_TypeDef *gpio = (GPIO_TypeDef*)(port_pin & ~0xf);

    // Enable the GPIO peripheral clock
    uint32_t en_bit = RCC_AHB1ENR_GPIOAEN_Pos + ((uintptr_t)gpio - GPIOA_BASE) / (GPIOB_BASE - GPIOA_BASE);
    RCC->AHB1ENR |= 1 << en_bit;
    volatile uint32_t tmp = RCC->AHB1ENR; // Delay after enabling clock
    (void)tmp;

    // Configure the pin
    uint32_t pin = port_pin & 0xf;
    gpio->MODER = (gpio->MODER & ~(3 << (2 * pin))) | ((mode & 3) << (2 * pin));
    gpio->OTYPER = (gpio->OTYPER & ~(1 << pin)) | ((mode >> 2) << pin);
    gpio->OSPEEDR = (gpio->OSPEEDR & ~(3 << (2 * pin))) | (2 << (2 * pin)); // full speed
    gpio->PUPDR = (gpio->PUPDR & ~(3 << (2 * pin))) | (pull << (2 * pin));
    gpio->AFR[pin >> 3] = (gpio->AFR[pin >> 3] & ~(15 << (4 * (pin & 7)))) | (alt << (4 * (pin & 7)));
}

void mp_hal_pin_config_speed(uint32_t port_pin, uint32_t speed) {
    GPIO_TypeDef *gpio = (GPIO_TypeDef*)(port_pin & ~0xf);
    uint32_t pin = port_pin & 0xf;
    gpio->OSPEEDR = (gpio->OSPEEDR & ~(3 << (2 * pin))) | (speed << (2 * pin));
}

/******************************************************************************/
// LED

#define LED0 MICROPY_HW_LED1
#define LED1 MICROPY_HW_LED2
#define LED2 MICROPY_HW_LED3

void led_init(void) {
    mp_hal_pin_output(LED0);
    mp_hal_pin_output(LED1);
    mp_hal_pin_output(LED2);
}

void led_state(int led, int val) {
    if (led == 1) {
        led = LED0;
    }
    if (val) {
        MICROPY_HW_LED_ON(led);
    } else {
        MICROPY_HW_LED_OFF(led);
    }
}

/******************************************************************************/
// USR BUTTON

static void usrbtn_init(void) {
    mp_hal_pin_config(MICROPY_HW_USRSW_PIN, MP_HAL_PIN_MODE_INPUT, MICROPY_HW_USRSW_PULL, 0);
}

static int usrbtn_state(void) {
    return mp_hal_pin_read(MICROPY_HW_USRSW_PIN) == MICROPY_HW_USRSW_PRESSED;
}

/******************************************************************************/
// FLASH

#ifndef MBOOT_SPIFLASH_LAYOUT
#define MBOOT_SPIFLASH_LAYOUT ""
#endif

#ifndef MBOOT_SPIFLASH2_LAYOUT
#define MBOOT_SPIFLASH2_LAYOUT ""
#endif

typedef struct {
    uint32_t base_address;
    uint32_t sector_size;
    uint32_t sector_count;
} flash_layout_t;

#if defined(STM32F7)
// FLASH_FLAG_PGSERR (Programming Sequence Error) was renamed to
// FLASH_FLAG_ERSERR (Erasing Sequence Error) in STM32F7
#define FLASH_FLAG_PGSERR FLASH_FLAG_ERSERR
#endif

#if defined(STM32F4) \
    || defined(STM32F722xx) \
    || defined(STM32F723xx) \
    || defined(STM32F732xx) \
    || defined(STM32F733xx)

#define FLASH_LAYOUT_STR "@Internal Flash  /0x08000000/04*016Kg,01*064Kg,07*128Kg" MBOOT_SPIFLASH_LAYOUT MBOOT_SPIFLASH2_LAYOUT

static const flash_layout_t flash_layout[] = {
    { 0x08000000, 0x04000, 4 },
    { 0x08010000, 0x10000, 1 },
    { 0x08020000, 0x20000, 3 },
    #if defined(FLASH_SECTOR_8)
    { 0x08080000, 0x20000, 4 },
    #endif
    #if defined(FLASH_SECTOR_12)
    { 0x08100000, 0x04000, 4 },
    { 0x08110000, 0x10000, 1 },
    { 0x08120000, 0x20000, 7 },
    #endif
};

#elif defined(STM32F767xx)

#define FLASH_LAYOUT_STR "@Internal Flash  /0x08000000/04*032Kg,01*128Kg,07*256Kg" MBOOT_SPIFLASH_LAYOUT MBOOT_SPIFLASH2_LAYOUT

// This is for dual-bank mode disabled
static const flash_layout_t flash_layout[] = {
    { 0x08000000, 0x08000, 4 },
    { 0x08020000, 0x20000, 1 },
    { 0x08040000, 0x40000, 7 },
};

#endif

static uint32_t flash_get_sector_index(uint32_t addr) {
    if (addr >= flash_layout[0].base_address) {
        uint32_t sector_index = 0;
        for (int i = 0; i < MP_ARRAY_SIZE(flash_layout); ++i) {
            for (int j = 0; j < flash_layout[i].sector_count; ++j) {
                uint32_t sector_start_next = flash_layout[i].base_address
                    + (j + 1) * flash_layout[i].sector_size;
                if (addr < sector_start_next) {
                    return sector_index;
                }
                ++sector_index;
            }
        }
    }
    return 0;
}

static int flash_mass_erase(void) {
    // TODO
    return -1;
}

static int flash_page_erase(uint32_t addr) {
    uint32_t sector = flash_get_sector_index(addr);
    if (sector == 0) {
        // Don't allow to erase the sector with this bootloader in it
        return -1;
    }

    HAL_FLASH_Unlock();

    // Clear pending flags (if any)
    __HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_EOP | FLASH_FLAG_OPERR | FLASH_FLAG_WRPERR |
                           FLASH_FLAG_PGAERR | FLASH_FLAG_PGPERR | FLASH_FLAG_PGSERR);

    // erase the sector(s)
    FLASH_EraseInitTypeDef EraseInitStruct;
    EraseInitStruct.TypeErase = TYPEERASE_SECTORS;
    EraseInitStruct.VoltageRange = VOLTAGE_RANGE_3; // voltage range needs to be 2.7V to 3.6V
    EraseInitStruct.Sector = sector;
    EraseInitStruct.NbSectors = 1;

    uint32_t SectorError = 0;
    if (HAL_FLASHEx_Erase(&EraseInitStruct, &SectorError) != HAL_OK) {
        // error occurred during sector erase
        return -1;
    }

    // Check the erase set bits to 1, at least for the first 256 bytes
    for (int i = 0; i < 64; ++i) {
        if (((volatile uint32_t*)addr)[i] != 0xffffffff) {
            return -2;
        }
    }

    return 0;
}

static int flash_write(uint32_t addr, const uint8_t *src8, size_t len) {
    if (addr >= flash_layout[0].base_address && addr < flash_layout[0].base_address + flash_layout[0].sector_size) {
        // Don't allow to write the sector with this bootloader in it
        return -1;
    }

    const uint32_t *src = (const uint32_t*)src8;
    size_t num_word32 = (len + 3) / 4;
    HAL_FLASH_Unlock();
    // program the flash word by word
    for (size_t i = 0; i < num_word32; i++) {
        if (HAL_FLASH_Program(TYPEPROGRAM_WORD, addr, *src) != HAL_OK) {
            return -1;
        }
        addr += 4;
        src += 1;
    }

    // TODO verify data

    return 0;
}

/******************************************************************************/
// Writable address space interface

static int do_mass_erase(void) {
    // TODO
    return flash_mass_erase();
}

#if defined(MBOOT_SPIFLASH_ADDR) || defined(MBOOT_SPIFLASH2_ADDR)
static int spiflash_page_erase(mp_spiflash_t *spif, uint32_t addr, uint32_t n_blocks) {
    for (int i = 0; i < n_blocks; ++i) {
        int ret = mp_spiflash_erase_block(spif, addr);
        if (ret != 0) {
            return ret;
        }
        addr += MP_SPIFLASH_ERASE_BLOCK_SIZE;
    }
    return 0;
}
#endif

static int do_page_erase(uint32_t addr) {
    led_state(LED0, 1);

    #if defined(MBOOT_SPIFLASH_ADDR)
    if (MBOOT_SPIFLASH_ADDR <= addr && addr < MBOOT_SPIFLASH_ADDR + MBOOT_SPIFLASH_BYTE_SIZE) {
        return spiflash_page_erase(MBOOT_SPIFLASH_SPIFLASH,
            addr - MBOOT_SPIFLASH_ADDR, MBOOT_SPIFLASH_ERASE_BLOCKS_PER_PAGE);
    }
    #endif

    #if defined(MBOOT_SPIFLASH2_ADDR)
    if (MBOOT_SPIFLASH2_ADDR <= addr && addr < MBOOT_SPIFLASH2_ADDR + MBOOT_SPIFLASH2_BYTE_SIZE) {
        return spiflash_page_erase(MBOOT_SPIFLASH2_SPIFLASH,
            addr - MBOOT_SPIFLASH2_ADDR, MBOOT_SPIFLASH2_ERASE_BLOCKS_PER_PAGE);
    }
    #endif

    return flash_page_erase(addr);
}

static void do_read(uint32_t addr, int len, uint8_t *buf) {
    #if defined(MBOOT_SPIFLASH_ADDR)
    if (MBOOT_SPIFLASH_ADDR <= addr && addr < MBOOT_SPIFLASH_ADDR + MBOOT_SPIFLASH_BYTE_SIZE) {
        mp_spiflash_read(MBOOT_SPIFLASH_SPIFLASH, addr - MBOOT_SPIFLASH_ADDR, len, buf);
        return;
    }
    #endif
    #if defined(MBOOT_SPIFLASH2_ADDR)
    if (MBOOT_SPIFLASH2_ADDR <= addr && addr < MBOOT_SPIFLASH2_ADDR + MBOOT_SPIFLASH2_BYTE_SIZE) {
        mp_spiflash_read(MBOOT_SPIFLASH2_SPIFLASH, addr - MBOOT_SPIFLASH2_ADDR, len, buf);
        return;
    }
    #endif

    // Other addresses, just read directly from memory
    memcpy(buf, (void*)addr, len);
}

static int do_write(uint32_t addr, const uint8_t *src8, size_t len) {
    static uint32_t led_tog = 0;
    led_state(LED0, (led_tog++) & 4);

    #if defined(MBOOT_SPIFLASH_ADDR)
    if (MBOOT_SPIFLASH_ADDR <= addr && addr < MBOOT_SPIFLASH_ADDR + MBOOT_SPIFLASH_BYTE_SIZE) {
        return mp_spiflash_write(MBOOT_SPIFLASH_SPIFLASH, addr - MBOOT_SPIFLASH_ADDR, len, src8);
    }
    #endif

    #if defined(MBOOT_SPIFLASH2_ADDR)
    if (MBOOT_SPIFLASH2_ADDR <= addr && addr < MBOOT_SPIFLASH2_ADDR + MBOOT_SPIFLASH2_BYTE_SIZE) {
        return mp_spiflash_write(MBOOT_SPIFLASH2_SPIFLASH, addr - MBOOT_SPIFLASH2_ADDR, len, src8);
    }
    #endif

    return flash_write(addr, src8, len);
}

/******************************************************************************/
// I2C slave interface

#if defined(MBOOT_I2C_SCL)

#define PASTE2(a, b) a ## b
#define PASTE3(a, b, c) a ## b ## c
#define EVAL_PASTE2(a, b) PASTE2(a, b)
#define EVAL_PASTE3(a, b, c) PASTE3(a, b, c)

#define MBOOT_I2Cx EVAL_PASTE2(I2C, MBOOT_I2C_PERIPH_ID)
#define I2Cx_EV_IRQn EVAL_PASTE3(I2C, MBOOT_I2C_PERIPH_ID, _EV_IRQn)
#define I2Cx_EV_IRQHandler EVAL_PASTE3(I2C, MBOOT_I2C_PERIPH_ID, _EV_IRQHandler)

#define I2C_CMD_BUF_LEN (129)

enum {
    I2C_CMD_ECHO = 1,
    I2C_CMD_GETID,      // () -> u8*12 unique id, ASCIIZ mcu name, ASCIIZ board name
    I2C_CMD_GETCAPS,    // not implemented
    I2C_CMD_RESET,      // () -> ()
    I2C_CMD_CONFIG,     // not implemented
    I2C_CMD_GETLAYOUT,  // () -> ASCII string
    I2C_CMD_MASSERASE,  // () -> ()
    I2C_CMD_PAGEERASE,  // le32 -> ()
    I2C_CMD_SETRDADDR,  // le32 -> ()
    I2C_CMD_SETWRADDR,  // le32 -> ()
    I2C_CMD_READ,       // u8 -> bytes
    I2C_CMD_WRITE,      // bytes -> ()
    I2C_CMD_COPY,       // not implemented
    I2C_CMD_CALCHASH,   // le32 -> u8*32
    I2C_CMD_MARKVALID,  // () -> ()
};

typedef struct _i2c_obj_t {
    volatile bool cmd_send_arg;
    volatile bool cmd_arg_sent;
    volatile int cmd_arg;
    volatile uint32_t cmd_rdaddr;
    volatile uint32_t cmd_wraddr;
    volatile uint16_t cmd_buf_pos;
    uint8_t cmd_buf[I2C_CMD_BUF_LEN];
} i2c_obj_t;

static i2c_obj_t i2c_obj;

void i2c_init(int addr) {
    i2c_obj.cmd_send_arg = false;

    mp_hal_pin_config(MBOOT_I2C_SCL, MP_HAL_PIN_MODE_ALT_OPEN_DRAIN, MP_HAL_PIN_PULL_NONE, MBOOT_I2C_ALTFUNC);
    mp_hal_pin_config(MBOOT_I2C_SDA, MP_HAL_PIN_MODE_ALT_OPEN_DRAIN, MP_HAL_PIN_PULL_NONE, MBOOT_I2C_ALTFUNC);

    i2c_slave_init(MBOOT_I2Cx, I2Cx_EV_IRQn, IRQ_PRI_I2C, addr);
}

int i2c_slave_process_addr_match(int rw) {
    if (i2c_obj.cmd_arg_sent) {
        i2c_obj.cmd_send_arg = false;
    }
    i2c_obj.cmd_buf_pos = 0;
    return 0; // ACK
}

int i2c_slave_process_rx_byte(uint8_t val) {
    if (i2c_obj.cmd_buf_pos < sizeof(i2c_obj.cmd_buf)) {
        i2c_obj.cmd_buf[i2c_obj.cmd_buf_pos++] = val;
    }
    return 0; // ACK
}

void i2c_slave_process_rx_end(void) {
    if (i2c_obj.cmd_buf_pos == 0) {
        return;
    }

    int len = i2c_obj.cmd_buf_pos - 1;
    uint8_t *buf = i2c_obj.cmd_buf;

    if (buf[0] == I2C_CMD_ECHO) {
        ++len;
    } else if (buf[0] == I2C_CMD_GETID && len == 0) {
        memcpy(buf, (uint8_t*)MP_HAL_UNIQUE_ID_ADDRESS, 12);
        memcpy(buf + 12, MICROPY_HW_MCU_NAME, sizeof(MICROPY_HW_MCU_NAME));
        memcpy(buf + 12 + sizeof(MICROPY_HW_MCU_NAME), MICROPY_HW_BOARD_NAME, sizeof(MICROPY_HW_BOARD_NAME) - 1);
        len = 12 + sizeof(MICROPY_HW_MCU_NAME) + sizeof(MICROPY_HW_BOARD_NAME) - 1;
    } else if (buf[0] == I2C_CMD_RESET && len == 0) {
        do_reset();
    } else if (buf[0] == I2C_CMD_GETLAYOUT && len == 0) {
        len = strlen(FLASH_LAYOUT_STR);
        memcpy(buf, FLASH_LAYOUT_STR, len);
    } else if (buf[0] == I2C_CMD_MASSERASE && len == 0) {
        len = do_mass_erase();
    } else if (buf[0] == I2C_CMD_PAGEERASE && len == 4) {
        len = do_page_erase(get_le32(buf + 1));
    } else if (buf[0] == I2C_CMD_SETRDADDR && len == 4) {
        i2c_obj.cmd_rdaddr = get_le32(buf + 1);
        len = 0;
    } else if (buf[0] == I2C_CMD_SETWRADDR && len == 4) {
        i2c_obj.cmd_wraddr = get_le32(buf + 1);
        len = 0;
    } else if (buf[0] == I2C_CMD_READ && len == 1) {
        len = buf[1];
        if (len > I2C_CMD_BUF_LEN) {
            len = I2C_CMD_BUF_LEN;
        }
        do_read(i2c_obj.cmd_rdaddr, len, buf);
        i2c_obj.cmd_rdaddr += len;
    } else if (buf[0] == I2C_CMD_WRITE) {
        if (i2c_obj.cmd_wraddr == APPLICATION_ADDR) {
            // Mark the 2 lower bits to indicate invalid app firmware
            buf[1] |= APP_VALIDITY_BITS;
        }
        int ret = do_write(i2c_obj.cmd_wraddr, buf + 1, len);
        if (ret < 0) {
            len = ret;
        } else {
            i2c_obj.cmd_wraddr += len;
            len = 0;
        }
    } else if (buf[0] == I2C_CMD_CALCHASH && len == 4) {
        uint32_t hashlen = get_le32(buf + 1);
        static CRYAL_SHA256_CTX ctx;
        sha256_init(&ctx);
        sha256_update(&ctx, (const void*)i2c_obj.cmd_rdaddr, hashlen);
        i2c_obj.cmd_rdaddr += hashlen;
        sha256_final(&ctx, buf);
        len = 32;
    } else if (buf[0] == I2C_CMD_MARKVALID && len == 0) {
        uint32_t buf;
        buf = *(volatile uint32_t*)APPLICATION_ADDR;
        if ((buf & APP_VALIDITY_BITS) != APP_VALIDITY_BITS) {
            len = -1;
        } else {
            buf &= ~APP_VALIDITY_BITS;
            int ret = do_write(APPLICATION_ADDR, (void*)&buf, 4);
            if (ret < 0) {
                len = ret;
            } else {
                buf = *(volatile uint32_t*)APPLICATION_ADDR;
                if ((buf & APP_VALIDITY_BITS) != 0) {
                    len = -2;
                } else {
                    len = 0;
                }
            }
        }
    } else {
        len = -127;
    }
    i2c_obj.cmd_arg = len;
    i2c_obj.cmd_send_arg = true;
    i2c_obj.cmd_arg_sent = false;
}

uint8_t i2c_slave_process_tx_byte(void) {
    if (i2c_obj.cmd_send_arg) {
        i2c_obj.cmd_arg_sent = true;
        return i2c_obj.cmd_arg;
    } else if (i2c_obj.cmd_buf_pos < sizeof(i2c_obj.cmd_buf)) {
        return i2c_obj.cmd_buf[i2c_obj.cmd_buf_pos++];
    } else {
        return 0;
    }
}

#endif // defined(MBOOT_I2C_SCL)

/******************************************************************************/
// DFU

#define DFU_XFER_SIZE (2048)

enum {
    DFU_DNLOAD = 1,
    DFU_UPLOAD = 2,
    DFU_GETSTATUS = 3,
    DFU_CLRSTATUS = 4,
    DFU_ABORT = 6,
};

enum {
    DFU_STATUS_IDLE = 2,
    DFU_STATUS_BUSY = 4,
    DFU_STATUS_DNLOAD_IDLE = 5,
    DFU_STATUS_MANIFEST = 7,
    DFU_STATUS_UPLOAD_IDLE = 9,
    DFU_STATUS_ERROR = 0xa,
};

enum {
    DFU_CMD_NONE = 0,
    DFU_CMD_EXIT = 1,
    DFU_CMD_UPLOAD = 7,
    DFU_CMD_DNLOAD = 8,
};

typedef struct _dfu_state_t {
    int status;
    int cmd;
    uint16_t wBlockNum;
    uint16_t wLength;
    uint32_t addr;
    uint8_t buf[DFU_XFER_SIZE] __attribute__((aligned(4)));
} dfu_state_t;

static dfu_state_t dfu_state;

static void dfu_init(void) {
    dfu_state.status = DFU_STATUS_IDLE;
    dfu_state.cmd = DFU_CMD_NONE;
    dfu_state.addr = 0x08000000;
}

static int dfu_process_dnload(void) {
    int ret = -1;
    if (dfu_state.wBlockNum == 0) {
        // download control commands
        if (dfu_state.wLength >= 1 && dfu_state.buf[0] == 0x41) {
            if (dfu_state.wLength == 1) {
                // mass erase
                ret = do_mass_erase();
            } else if (dfu_state.wLength == 5) {
                // erase page
                ret = do_page_erase(get_le32(&dfu_state.buf[1]));
            }
        } else if (dfu_state.wLength >= 1 && dfu_state.buf[0] == 0x21) {
            if (dfu_state.wLength == 5) {
                // set address
                dfu_state.addr = get_le32(&dfu_state.buf[1]);
                ret = 0;
            }
        }
    } else if (dfu_state.wBlockNum > 1) {
        // write data to memory
        ret = do_write(dfu_state.addr, dfu_state.buf, dfu_state.wLength);
    }
    if (ret == 0) {
        return DFU_STATUS_DNLOAD_IDLE;
    } else {
        return DFU_STATUS_ERROR;
    }
}

static void dfu_handle_rx(int cmd, int arg, int len, const void *buf) {
    if (cmd == DFU_CLRSTATUS) {
        // clear status
        dfu_state.status = DFU_STATUS_IDLE;
        dfu_state.cmd = DFU_CMD_NONE;
    } else if (cmd == DFU_ABORT) {
        // clear status
        dfu_state.status = DFU_STATUS_IDLE;
        dfu_state.cmd = DFU_CMD_NONE;
    } else if (cmd == DFU_DNLOAD) {
        if (len == 0) {
            // exit DFU
            dfu_state.cmd = DFU_CMD_EXIT;
        } else {
            // download
            dfu_state.cmd = DFU_CMD_DNLOAD;
            dfu_state.wBlockNum = arg;
            dfu_state.wLength = len;
            memcpy(dfu_state.buf, buf, len);
        }
    }
}

static void dfu_process(void) {
    if (dfu_state.status == DFU_STATUS_MANIFEST) {
        do_reset();
    }

    if (dfu_state.status == DFU_STATUS_BUSY) {
        if (dfu_state.cmd == DFU_CMD_DNLOAD) {
            dfu_state.cmd = DFU_CMD_NONE;
            dfu_state.status = dfu_process_dnload();
        }
    }
}

static int dfu_handle_tx(int cmd, int arg, int len, uint8_t *buf, int max_len) {
    if (cmd == DFU_UPLOAD) {
        if (arg >= 2) {
            dfu_state.cmd = DFU_CMD_UPLOAD;
            uint32_t addr = (arg - 2) * max_len + dfu_state.addr;
            do_read(addr, len, buf);
            return len;
        }
    } else if (cmd == DFU_GETSTATUS && len == 6) {
        // execute command and get status
        switch (dfu_state.cmd) {
            case DFU_CMD_NONE:
                break;
            case DFU_CMD_EXIT:
                dfu_state.status = DFU_STATUS_MANIFEST;
                break;
            case DFU_CMD_UPLOAD:
                dfu_state.status = DFU_STATUS_UPLOAD_IDLE;
                break;
            case DFU_CMD_DNLOAD:
                dfu_state.status = DFU_STATUS_BUSY;
                break;
        }
        buf[0] = 0;
        buf[1] = dfu_state.cmd; // TODO is this correct?
        buf[2] = 0;
        buf[3] = 0;
        buf[4] = dfu_state.status;
        buf[5] = 0;
        return 6;
    }
    return -1;
}

/******************************************************************************/
// USB

#define USB_XFER_SIZE (DFU_XFER_SIZE)

enum {
    USB_PHY_FS_ID = 0,
    USB_PHY_HS_ID = 1,
};

typedef struct _pyb_usbdd_obj_t {
    bool started;
    bool tx_pending;
    USBD_HandleTypeDef hUSBDDevice;

    uint8_t bRequest;
    uint16_t wValue;
    uint16_t wLength;
    __ALIGN_BEGIN uint8_t rx_buf[USB_XFER_SIZE] __ALIGN_END;
    __ALIGN_BEGIN uint8_t tx_buf[USB_XFER_SIZE] __ALIGN_END;

    // RAM to hold the current descriptors, which we configure on the fly
    __ALIGN_BEGIN uint8_t usbd_device_desc[USB_LEN_DEV_DESC] __ALIGN_END;
    __ALIGN_BEGIN uint8_t usbd_str_desc[USBD_MAX_STR_DESC_SIZ] __ALIGN_END;
} pyb_usbdd_obj_t;

#define USBD_LANGID_STRING (0x409)

__ALIGN_BEGIN static const uint8_t USBD_LangIDDesc[USB_LEN_LANGID_STR_DESC] __ALIGN_END = {
    USB_LEN_LANGID_STR_DESC,
    USB_DESC_TYPE_STRING,
    LOBYTE(USBD_LANGID_STRING),
    HIBYTE(USBD_LANGID_STRING),
};

static const uint8_t dev_descr[0x12] = "\x12\x01\x00\x01\x00\x00\x00\x40\x83\x04\x11\xdf\x00\x22\x01\x02\x03\x01";

// This may be modified by USBD_GetDescriptor
static uint8_t cfg_descr[9 + 9 + 9] =
    "\x09\x02\x1b\x00\x01\x01\x00\xc0\x32"
    "\x09\x04\x00\x00\x00\xfe\x01\x02\x04"
    "\x09\x21\x0b\xff\x00\x00\x08\x1a\x01" // \x00\x08 goes with USB_XFER_SIZE
;

static uint8_t *pyb_usbdd_DeviceDescriptor(USBD_HandleTypeDef *pdev, uint16_t *length) {
    *length = USB_LEN_DEV_DESC;
    return (uint8_t*)dev_descr;
}

static char get_hex_char(int val) {
    val &= 0xf;
    if (val <= 9) {
        return '0' + val;
    } else {
        return 'A' + val - 10;
    }
}

static void format_hex(char *buf, int val) {
    buf[0] = get_hex_char(val >> 4);
    buf[1] = get_hex_char(val);
}

static uint8_t *pyb_usbdd_StrDescriptor(USBD_HandleTypeDef *pdev, uint8_t idx, uint16_t *length) {
    pyb_usbdd_obj_t *self = (pyb_usbdd_obj_t*)pdev->pClassData;
    uint8_t *str_desc = self->usbd_str_desc;
    switch (idx) {
        case USBD_IDX_LANGID_STR:
            *length = sizeof(USBD_LangIDDesc);
            return (uint8_t*)USBD_LangIDDesc; // the data should only be read from this buf

        case USBD_IDX_MFC_STR:
            USBD_GetString((uint8_t*)"USBDevice Manuf", str_desc, length);
            return str_desc;

        case USBD_IDX_PRODUCT_STR:
            USBD_GetString((uint8_t*)"USBDevice Product", str_desc, length);
            return str_desc;

        case USBD_IDX_SERIAL_STR: {
            // This document: http://www.usb.org/developers/docs/devclass_docs/usbmassbulk_10.pdf
            // says that the serial number has to be at least 12 digits long and that
            // the last 12 digits need to be unique. It also stipulates that the valid
            // character set is that of upper-case hexadecimal digits.
            //
            // The onboard DFU bootloader produces a 12-digit serial number based on
            // the 96-bit unique ID, so for consistency we go with this algorithm.
            // You can see the serial number if you do:
            //
            //     dfu-util -l
            //
            // See: https://my.st.com/52d187b7 for the algorithim used.
            uint8_t *id = (uint8_t*)MP_HAL_UNIQUE_ID_ADDRESS;
            char serial_buf[16];
            format_hex(&serial_buf[0], id[11]);
            format_hex(&serial_buf[2], id[10] + id[2]);
            format_hex(&serial_buf[4], id[9]);
            format_hex(&serial_buf[6], id[8] + id[0]);
            format_hex(&serial_buf[8], id[7]);
            format_hex(&serial_buf[10], id[6]);
            serial_buf[12] = '\0';

            USBD_GetString((uint8_t*)serial_buf, str_desc, length);
            return str_desc;
        }

        case USBD_IDX_CONFIG_STR:
            USBD_GetString((uint8_t*)FLASH_LAYOUT_STR, str_desc, length);
            return str_desc;

        default:
            return NULL;
    }
}

static const USBD_DescriptorsTypeDef pyb_usbdd_descriptors = {
    pyb_usbdd_DeviceDescriptor,
    pyb_usbdd_StrDescriptor,
};

static uint8_t pyb_usbdd_Init(USBD_HandleTypeDef *pdev, uint8_t cfgidx) {
    pyb_usbdd_obj_t *self = (pyb_usbdd_obj_t*)pdev->pClassData;
    (void)self;
    return USBD_OK;
}

static uint8_t pyb_usbdd_DeInit(USBD_HandleTypeDef *pdev, uint8_t cfgidx) {
    pyb_usbdd_obj_t *self = (pyb_usbdd_obj_t*)pdev->pClassData;
    (void)self;
    return USBD_OK;
}

static uint8_t pyb_usbdd_Setup(USBD_HandleTypeDef *pdev, USBD_SetupReqTypedef *req) {
    pyb_usbdd_obj_t *self = (pyb_usbdd_obj_t*)pdev->pClassData;
    (void)self;
    self->bRequest = req->bRequest;
    self->wValue = req->wValue;
    self->wLength = req->wLength;
    if (req->bmRequest == 0x21) {
        // host-to-device request
        if (req->wLength == 0) {
            // no data, process command straightaway
            dfu_handle_rx(self->bRequest, self->wValue, 0, NULL);
        } else {
            // have data, prepare to receive it
            USBD_CtlPrepareRx(pdev, self->rx_buf, req->wLength);
        }
    } else if (req->bmRequest == 0xa1) {
        // device-to-host request
        int len = dfu_handle_tx(self->bRequest, self->wValue, self->wLength, self->tx_buf, USB_XFER_SIZE);
        if (len >= 0) {
            self->tx_pending = true;
            USBD_CtlSendData(&self->hUSBDDevice, self->tx_buf, len);
        }
    }
    return USBD_OK;
}

static uint8_t pyb_usbdd_EP0_TxSent(USBD_HandleTypeDef *pdev) {
    pyb_usbdd_obj_t *self = (pyb_usbdd_obj_t*)pdev->pClassData;
    self->tx_pending = false;
    #if !USE_USB_POLLING
    // Process now that we have sent a response
    dfu_process();
    #endif
    return USBD_OK;
}

static uint8_t pyb_usbdd_EP0_RxReady(USBD_HandleTypeDef *pdev) {
    pyb_usbdd_obj_t *self = (pyb_usbdd_obj_t*)pdev->pClassData;
    dfu_handle_rx(self->bRequest, self->wValue, self->wLength, self->rx_buf);
    return USBD_OK;
}

static uint8_t *pyb_usbdd_GetCfgDesc(USBD_HandleTypeDef *pdev, uint16_t *length) {
    *length = sizeof(cfg_descr);
    return (uint8_t*)cfg_descr;
}

// this is used only in high-speed mode, which we don't support
static uint8_t *pyb_usbdd_GetDeviceQualifierDescriptor(USBD_HandleTypeDef *pdev, uint16_t *length) {
    pyb_usbdd_obj_t *self = (pyb_usbdd_obj_t*)pdev->pClassData;
    (void)self;
    /*
    *length = sizeof(USBD_CDC_MSC_HID_DeviceQualifierDesc);
    return USBD_CDC_MSC_HID_DeviceQualifierDesc;
    */
    *length = 0;
    return NULL;
}

static const USBD_ClassTypeDef pyb_usbdd_class = {
    pyb_usbdd_Init,
    pyb_usbdd_DeInit,
    pyb_usbdd_Setup,
    pyb_usbdd_EP0_TxSent,
    pyb_usbdd_EP0_RxReady,
    NULL, // pyb_usbdd_DataIn,
    NULL, // pyb_usbdd_DataOut,
    NULL, // SOF
    NULL, // IsoINIncomplete
    NULL, // IsoOUTIncomplete
    pyb_usbdd_GetCfgDesc,
    pyb_usbdd_GetCfgDesc,
    pyb_usbdd_GetCfgDesc,
    pyb_usbdd_GetDeviceQualifierDescriptor,
};

static pyb_usbdd_obj_t pyb_usbdd;

static void pyb_usbdd_init(pyb_usbdd_obj_t *self, int phy_id) {
    self->started = false;
    USBD_HandleTypeDef *usbd = &self->hUSBDDevice;
    usbd->id = phy_id;
    usbd->dev_state = USBD_STATE_DEFAULT;
    usbd->pDesc = (USBD_DescriptorsTypeDef*)&pyb_usbdd_descriptors;
    usbd->pClass = &pyb_usbdd_class;
    usbd->pClassData = self;
}

static void pyb_usbdd_start(pyb_usbdd_obj_t *self) {
    if (!self->started) {
        USBD_LL_Init(&self->hUSBDDevice, 0);
        USBD_LL_Start(&self->hUSBDDevice);
        self->started = true;
    }
}

static void pyb_usbdd_stop(pyb_usbdd_obj_t *self) {
    if (self->started) {
        USBD_Stop(&self->hUSBDDevice);
        self->started = false;
    }
}

static int pyb_usbdd_shutdown(void) {
    pyb_usbdd_stop(&pyb_usbdd);
    return 0;
}

/******************************************************************************/
// main

#define RESET_MODE_NUM_STATES (4)
#define RESET_MODE_TIMEOUT_CYCLES (8)
#define RESET_MODE_LED_STATES 0x7421

static int get_reset_mode(void) {
    usrbtn_init();
    int reset_mode = 1;
    if (usrbtn_state()) {
        // Cycle through reset modes while USR is held
        // Timeout is roughly 20s, where reset_mode=1
        systick_init();
        led_init();
        reset_mode = 0;
        for (int i = 0; i < (RESET_MODE_NUM_STATES * RESET_MODE_TIMEOUT_CYCLES + 1) * 32; i++) {
            if (i % 32 == 0) {
                if (++reset_mode > RESET_MODE_NUM_STATES) {
                    reset_mode = 1;
                }
                uint8_t l = RESET_MODE_LED_STATES >> ((reset_mode - 1) * 4);
                led_state(LED0, l & 1);
                led_state(LED1, l & 2);
                led_state(LED2, l & 4);
            }
            if (!usrbtn_state()) {
                break;
            }
            mp_hal_delay_ms(19);
        }
        // Flash the selected reset mode
        for (int i = 0; i < 6; i++) {
            led_state(LED0, 0);
            led_state(LED1, 0);
            led_state(LED2, 0);
            mp_hal_delay_ms(50);
            uint8_t l = RESET_MODE_LED_STATES >> ((reset_mode - 1) * 4);
            led_state(LED0, l & 1);
            led_state(LED1, l & 2);
            led_state(LED2, l & 4);
            mp_hal_delay_ms(50);
        }
        mp_hal_delay_ms(300);
    }
    return reset_mode;
}

static void do_reset(void) {
    led_state(LED0, 0);
    led_state(LED1, 0);
    led_state(LED2, 0);
    mp_hal_delay_ms(50);
    pyb_usbdd_shutdown();
    #if defined(MBOOT_I2C_SCL)
    i2c_slave_shutdown(MBOOT_I2Cx, I2Cx_EV_IRQn);
    #endif
    mp_hal_delay_ms(50);
    NVIC_SystemReset();
}

uint32_t SystemCoreClock;

extern PCD_HandleTypeDef pcd_fs_handle;
extern PCD_HandleTypeDef pcd_hs_handle;

void stm32_main(int initial_r0) {
    #if defined(STM32F4)
    #if INSTRUCTION_CACHE_ENABLE
    __HAL_FLASH_INSTRUCTION_CACHE_ENABLE();
    #endif
    #if DATA_CACHE_ENABLE
    __HAL_FLASH_DATA_CACHE_ENABLE();
    #endif
    #if PREFETCH_ENABLE
    __HAL_FLASH_PREFETCH_BUFFER_ENABLE();
    #endif
    #elif defined(STM32F7)
    #if ART_ACCLERATOR_ENABLE
    __HAL_FLASH_ART_ENABLE();
    #endif
    #endif

    NVIC_SetPriorityGrouping(NVIC_PRIORITYGROUP_4);

    #if USE_CACHE && defined(STM32F7)
    SCB_EnableICache();
    SCB_EnableDCache();
    #endif

    #ifdef MBOOT_BOOTPIN_PIN
    mp_hal_pin_config(MBOOT_BOOTPIN_PIN, MP_HAL_PIN_MODE_INPUT, MBOOT_BOOTPIN_PULL, 0);
    if (mp_hal_pin_read(MBOOT_BOOTPIN_PIN) == MBOOT_BOOTPIN_ACTIVE) {
        goto enter_bootloader;
    }
    #endif

    if ((initial_r0 & 0xffffff00) == 0x70ad0000) {
        goto enter_bootloader;
    }

    // MCU starts up with 16MHz HSI
    SystemCoreClock = 16000000;

    int reset_mode = get_reset_mode();
    uint32_t msp = *(volatile uint32_t*)APPLICATION_ADDR;
    if (reset_mode != 4 && (msp & APP_VALIDITY_BITS) == 0) {
        // not DFU mode so jump to application, passing through reset_mode
        // undo our DFU settings
        // TODO probably should disable all IRQ sources first
        #if USE_CACHE && defined(STM32F7)
        SCB_DisableICache();
        SCB_DisableDCache();
        #endif
        __set_MSP(msp);
        ((void (*)(uint32_t)) *((volatile uint32_t*)(APPLICATION_ADDR + 4)))(reset_mode);
    }

enter_bootloader:

    // Init subsystems (get_reset_mode() may call these, calling them again is ok)
    led_init();

    // set the system clock to be HSE
    SystemClock_Config();

    #if USE_USB_POLLING
    // irqs with a priority value greater or equal to "pri" will be disabled
    // "pri" should be between 1 and 15 inclusive
    uint32_t pri = 2;
    pri <<= (8 - __NVIC_PRIO_BITS);
    __ASM volatile ("msr basepri_max, %0" : : "r" (pri) : "memory");
    #endif

    #if defined(MBOOT_SPIFLASH_ADDR)
    MBOOT_SPIFLASH_SPIFLASH->config = MBOOT_SPIFLASH_CONFIG;
    mp_spiflash_init(MBOOT_SPIFLASH_SPIFLASH);
    #endif

    #if defined(MBOOT_SPIFLASH2_ADDR)
    MBOOT_SPIFLASH2_SPIFLASH->config = MBOOT_SPIFLASH2_CONFIG;
    mp_spiflash_init(MBOOT_SPIFLASH2_SPIFLASH);
    #endif

    dfu_init();

    pyb_usbdd_init(&pyb_usbdd, MICROPY_HW_USB_MAIN_DEV);
    pyb_usbdd_start(&pyb_usbdd);

    #if defined(MBOOT_I2C_SCL)
    initial_r0 &= 0x7f;
    if (initial_r0 == 0) {
        initial_r0 = 0x23; // Default I2C address
    }
    i2c_init(initial_r0);
    #endif

    led_state(LED0, 0);
    led_state(LED1, 0);
    led_state(LED2, 0);

    #if USE_USB_POLLING
    uint32_t ss = systick_ms;
    int ss2 = -1;
    #endif
    for (;;) {
        #if USE_USB_POLLING
        #if defined(MICROPY_HW_USB_FS)
        if (pcd_fs_handle.Instance->GINTSTS & pcd_fs_handle.Instance->GINTMSK) {
            HAL_PCD_IRQHandler(&pcd_fs_handle);
        }
        #endif
        #if defined(MICROPY_HW_USB_HS)
        if (pcd_hs_handle.Instance->GINTSTS & pcd_hs_handle.Instance->GINTMSK) {
            HAL_PCD_IRQHandler(&pcd_hs_handle);
        }
        #endif
        if (!pyb_usbdd.tx_pending) {
            dfu_process();
        }
        #endif

        #if USE_USB_POLLING
        //__WFI(); // slows it down way too much; might work with 10x faster systick
        if (systick_ms - ss > 50) {
            ss += 50;
            ss2 = (ss2 + 1) % 20;
            switch (ss2) {
                case 0: led_state(LED0, 1); break;
                case 1: led_state(LED0, 0); break;
            }
        }
        #else
        led_state(LED0, 1);
        mp_hal_delay_ms(50);
        led_state(LED0, 0);
        mp_hal_delay_ms(950);
        #endif
    }
}

void NMI_Handler(void) {
}

void MemManage_Handler(void) {
    while (1) {
        __fatal_error("MemManage");
    }
}

void BusFault_Handler(void) {
    while (1) {
        __fatal_error("BusFault");
    }
}

void UsageFault_Handler(void) {
    while (1) {
        __fatal_error("UsageFault");
    }
}

void SVC_Handler(void) {
}

void DebugMon_Handler(void) {
}

void PendSV_Handler(void) {
}

void SysTick_Handler(void) {
    systick_ms += 1;

    // Read the systick control regster. This has the side effect of clearing
    // the COUNTFLAG bit, which makes the logic in mp_hal_ticks_us
    // work properly.
    SysTick->CTRL;
}

#if defined(MBOOT_I2C_SCL)
void I2Cx_EV_IRQHandler(void) {
    i2c_slave_ev_irq_handler(MBOOT_I2Cx);
}
#endif

#if !USE_USB_POLLING
#if defined(MICROPY_HW_USB_FS)
void OTG_FS_IRQHandler(void) {
    HAL_PCD_IRQHandler(&pcd_fs_handle);
}
#endif
#if defined(MICROPY_HW_USB_HS)
void OTG_HS_IRQHandler(void) {
    HAL_PCD_IRQHandler(&pcd_hs_handle);
}
#endif
#endif