CircuitPython

Source code browser

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
/*
 * This file is part of the MicroPython project, http://micropython.org/
 *
 * The MIT License (MIT)
 *
 * Copyright (c) 2013, 2014 Damien P. George
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

#include <stdio.h>
#include <string.h>

#include "py/runtime.h"
#include "py/mphal.h"
#include "extmod/machine_spi.h"
#include "irq.h"
#include "pin.h"
#include "bufhelper.h"
#include "spi.h"

/// \moduleref pyb
/// \class SPI - a master-driven serial protocol
///
/// SPI is a serial protocol that is driven by a master.  At the physical level
/// there are 3 lines: SCK, MOSI, MISO.
///
/// See usage model of I2C; SPI is very similar.  Main difference is
/// parameters to init the SPI bus:
///
///     from pyb import SPI
///     spi = SPI(1, SPI.MASTER, baudrate=600000, polarity=1, phase=0, crc=0x7)
///
/// Only required parameter is mode, SPI.MASTER or SPI.SLAVE.  Polarity can be
/// 0 or 1, and is the level the idle clock line sits at.  Phase can be 0 or 1
/// to sample data on the first or second clock edge respectively.  Crc can be
/// None for no CRC, or a polynomial specifier.
///
/// Additional method for SPI:
///
///     data = spi.send_recv(b'1234')        # send 4 bytes and receive 4 bytes
///     buf = bytearray(4)
///     spi.send_recv(b'1234', buf)          # send 4 bytes and receive 4 into buf
///     spi.send_recv(buf, buf)              # send/recv 4 bytes from/to buf

// Possible DMA configurations for SPI busses:
// SPI1_TX: DMA2_Stream3.CHANNEL_3 or DMA2_Stream5.CHANNEL_3
// SPI1_RX: DMA2_Stream0.CHANNEL_3 or DMA2_Stream2.CHANNEL_3
// SPI2_TX: DMA1_Stream4.CHANNEL_0
// SPI2_RX: DMA1_Stream3.CHANNEL_0
// SPI3_TX: DMA1_Stream5.CHANNEL_0 or DMA1_Stream7.CHANNEL_0
// SPI3_RX: DMA1_Stream0.CHANNEL_0 or DMA1_Stream2.CHANNEL_0
// SPI4_TX: DMA2_Stream4.CHANNEL_5 or DMA2_Stream1.CHANNEL_4
// SPI4_RX: DMA2_Stream3.CHANNEL_5 or DMA2_Stream0.CHANNEL_4
// SPI5_TX: DMA2_Stream4.CHANNEL_2 or DMA2_Stream6.CHANNEL_7
// SPI5_RX: DMA2_Stream3.CHANNEL_2 or DMA2_Stream5.CHANNEL_7
// SPI6_TX: DMA2_Stream5.CHANNEL_1
// SPI6_RX: DMA2_Stream6.CHANNEL_1

#if defined(MICROPY_HW_SPI1_SCK)
SPI_HandleTypeDef SPIHandle1 = {.Instance = NULL};
#endif
#if defined(MICROPY_HW_SPI2_SCK)
SPI_HandleTypeDef SPIHandle2 = {.Instance = NULL};
#endif
#if defined(MICROPY_HW_SPI3_SCK)
SPI_HandleTypeDef SPIHandle3 = {.Instance = NULL};
#endif
#if defined(MICROPY_HW_SPI4_SCK)
SPI_HandleTypeDef SPIHandle4 = {.Instance = NULL};
#endif
#if defined(MICROPY_HW_SPI5_SCK)
SPI_HandleTypeDef SPIHandle5 = {.Instance = NULL};
#endif
#if defined(MICROPY_HW_SPI6_SCK)
SPI_HandleTypeDef SPIHandle6 = {.Instance = NULL};
#endif

const spi_t spi_obj[6] = {
    #if defined(MICROPY_HW_SPI1_SCK)
    {&SPIHandle1, &dma_SPI_1_TX, &dma_SPI_1_RX},
    #else
    {NULL, NULL, NULL},
    #endif
    #if defined(MICROPY_HW_SPI2_SCK)
    {&SPIHandle2, &dma_SPI_2_TX, &dma_SPI_2_RX},
    #else
    {NULL, NULL, NULL},
    #endif
    #if defined(MICROPY_HW_SPI3_SCK)
    {&SPIHandle3, &dma_SPI_3_TX, &dma_SPI_3_RX},
    #else
    {NULL, NULL, NULL},
    #endif
    #if defined(MICROPY_HW_SPI4_SCK)
    {&SPIHandle4, &dma_SPI_4_TX, &dma_SPI_4_RX},
    #else
    {NULL, NULL, NULL},
    #endif
    #if defined(MICROPY_HW_SPI5_SCK)
    {&SPIHandle5, &dma_SPI_5_TX, &dma_SPI_5_RX},
    #else
    {NULL, NULL, NULL},
    #endif
    #if defined(MICROPY_HW_SPI6_SCK)
    {&SPIHandle6, &dma_SPI_6_TX, &dma_SPI_6_RX},
    #else
    {NULL, NULL, NULL},
    #endif
};

void spi_init0(void) {
    // Initialise the SPI handles.
    // The structs live on the BSS so all other fields will be zero after a reset.
    #if defined(MICROPY_HW_SPI1_SCK)
    SPIHandle1.Instance = SPI1;
    #endif
    #if defined(MICROPY_HW_SPI2_SCK)
    SPIHandle2.Instance = SPI2;
    #endif
    #if defined(MICROPY_HW_SPI3_SCK)
    SPIHandle3.Instance = SPI3;
    #endif
    #if defined(MICROPY_HW_SPI4_SCK)
    SPIHandle4.Instance = SPI4;
    #endif
    #if defined(MICROPY_HW_SPI5_SCK)
    SPIHandle5.Instance = SPI5;
    #endif
    #if defined(MICROPY_HW_SPI6_SCK)
    SPIHandle6.Instance = SPI6;
    #endif
}

STATIC int spi_find(mp_obj_t id) {
    if (MP_OBJ_IS_STR(id)) {
        // given a string id
        const char *port = mp_obj_str_get_str(id);
        if (0) {
        #ifdef MICROPY_HW_SPI1_NAME
        } else if (strcmp(port, MICROPY_HW_SPI1_NAME) == 0) {
            return 1;
        #endif
        #ifdef MICROPY_HW_SPI2_NAME
        } else if (strcmp(port, MICROPY_HW_SPI2_NAME) == 0) {
            return 2;
        #endif
        #ifdef MICROPY_HW_SPI3_NAME
        } else if (strcmp(port, MICROPY_HW_SPI3_NAME) == 0) {
            return 3;
        #endif
        #ifdef MICROPY_HW_SPI4_NAME
        } else if (strcmp(port, MICROPY_HW_SPI4_NAME) == 0) {
            return 4;
        #endif
        #ifdef MICROPY_HW_SPI5_NAME
        } else if (strcmp(port, MICROPY_HW_SPI5_NAME) == 0) {
            return 5;
        #endif
        #ifdef MICROPY_HW_SPI6_NAME
        } else if (strcmp(port, MICROPY_HW_SPI6_NAME) == 0) {
            return 6;
        #endif
        }
        nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError,
            "SPI(%s) doesn't exist", port));
    } else {
        // given an integer id
        int spi_id = mp_obj_get_int(id);
        if (spi_id >= 1 && spi_id <= MP_ARRAY_SIZE(spi_obj)
            && spi_obj[spi_id - 1].spi != NULL) {
            return spi_id;
        }
        nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError,
            "SPI(%d) doesn't exist", spi_id));
    }
}

// sets the parameters in the SPI_InitTypeDef struct
// if an argument is -1 then the corresponding parameter is not changed
STATIC void spi_set_params(const spi_t *spi_obj, uint32_t prescale, int32_t baudrate,
    int32_t polarity, int32_t phase, int32_t bits, int32_t firstbit) {
    SPI_HandleTypeDef *spi = spi_obj->spi;
    SPI_InitTypeDef *init = &spi->Init;

    if (prescale != 0xffffffff || baudrate != -1) {
        if (prescale == 0xffffffff) {
            // prescaler not given, so select one that yields at most the requested baudrate
            mp_uint_t spi_clock;
            #if defined(STM32F0)
            spi_clock = HAL_RCC_GetPCLK1Freq();
            #else
            if (spi->Instance == SPI2 || spi->Instance == SPI3) {
                // SPI2 and SPI3 are on APB1
                spi_clock = HAL_RCC_GetPCLK1Freq();
            } else {
                // SPI1, SPI4, SPI5 and SPI6 are on APB2
                spi_clock = HAL_RCC_GetPCLK2Freq();
            }
            #endif
            prescale = spi_clock / baudrate;
        }
        if (prescale <= 2) { init->BaudRatePrescaler = SPI_BAUDRATEPRESCALER_2; }
        else if (prescale <= 4) { init->BaudRatePrescaler = SPI_BAUDRATEPRESCALER_4; }
        else if (prescale <= 8) { init->BaudRatePrescaler = SPI_BAUDRATEPRESCALER_8; }
        else if (prescale <= 16) { init->BaudRatePrescaler = SPI_BAUDRATEPRESCALER_16; }
        else if (prescale <= 32) { init->BaudRatePrescaler = SPI_BAUDRATEPRESCALER_32; }
        else if (prescale <= 64) { init->BaudRatePrescaler = SPI_BAUDRATEPRESCALER_64; }
        else if (prescale <= 128) { init->BaudRatePrescaler = SPI_BAUDRATEPRESCALER_128; }
        else { init->BaudRatePrescaler = SPI_BAUDRATEPRESCALER_256; }
    }

    if (polarity != -1) {
        init->CLKPolarity = polarity == 0 ? SPI_POLARITY_LOW : SPI_POLARITY_HIGH;
    }

    if (phase != -1) {
        init->CLKPhase = phase == 0 ? SPI_PHASE_1EDGE : SPI_PHASE_2EDGE;
    }

    if (bits != -1) {
        init->DataSize = (bits == 16) ? SPI_DATASIZE_16BIT : SPI_DATASIZE_8BIT;
    }

    if (firstbit != -1) {
        init->FirstBit = firstbit;
    }
}

// TODO allow to take a list of pins to use
void spi_init(const spi_t *self, bool enable_nss_pin) {
    SPI_HandleTypeDef *spi = self->spi;
    const pin_obj_t *pins[4] = { NULL, NULL, NULL, NULL };

    if (0) {
    #if defined(MICROPY_HW_SPI1_SCK)
    } else if (spi->Instance == SPI1) {
        #if defined(MICROPY_HW_SPI1_NSS)
        pins[0] = MICROPY_HW_SPI1_NSS;
        #endif
        pins[1] = MICROPY_HW_SPI1_SCK;
        #if defined(MICROPY_HW_SPI1_MISO)
        pins[2] = MICROPY_HW_SPI1_MISO;
        #endif
        pins[3] = MICROPY_HW_SPI1_MOSI;
        // enable the SPI clock
        __HAL_RCC_SPI1_CLK_ENABLE();
    #endif
    #if defined(MICROPY_HW_SPI2_SCK)
    } else if (spi->Instance == SPI2) {
        #if defined(MICROPY_HW_SPI2_NSS)
        pins[0] = MICROPY_HW_SPI2_NSS;
        #endif
        pins[1] = MICROPY_HW_SPI2_SCK;
        #if defined(MICROPY_HW_SPI2_MISO)
        pins[2] = MICROPY_HW_SPI2_MISO;
        #endif
        pins[3] = MICROPY_HW_SPI2_MOSI;
        // enable the SPI clock
        __HAL_RCC_SPI2_CLK_ENABLE();
    #endif
    #if defined(MICROPY_HW_SPI3_SCK)
    } else if (spi->Instance == SPI3) {
        #if defined(MICROPY_HW_SPI3_NSS)
        pins[0] = MICROPY_HW_SPI3_NSS;
        #endif
        pins[1] = MICROPY_HW_SPI3_SCK;
        #if defined(MICROPY_HW_SPI3_MISO)
        pins[2] = MICROPY_HW_SPI3_MISO;
        #endif
        pins[3] = MICROPY_HW_SPI3_MOSI;
        // enable the SPI clock
        __HAL_RCC_SPI3_CLK_ENABLE();
    #endif
    #if defined(MICROPY_HW_SPI4_SCK)
    } else if (spi->Instance == SPI4) {
        #if defined(MICROPY_HW_SPI4_NSS)
        pins[0] = MICROPY_HW_SPI4_NSS;
        #endif
        pins[1] = MICROPY_HW_SPI4_SCK;
        #if defined(MICROPY_HW_SPI4_MISO)
        pins[2] = MICROPY_HW_SPI4_MISO;
        #endif
        pins[3] = MICROPY_HW_SPI4_MOSI;
        // enable the SPI clock
        __HAL_RCC_SPI4_CLK_ENABLE();
    #endif
    #if defined(MICROPY_HW_SPI5_SCK)
    } else if (spi->Instance == SPI5) {
        #if defined(MICROPY_HW_SPI5_NSS)
        pins[0] = MICROPY_HW_SPI5_NSS;
        #endif
        pins[1] = MICROPY_HW_SPI5_SCK;
        #if defined(MICROPY_HW_SPI5_MISO)
        pins[2] = MICROPY_HW_SPI5_MISO;
        #endif
        pins[3] = MICROPY_HW_SPI5_MOSI;
        // enable the SPI clock
        __HAL_RCC_SPI5_CLK_ENABLE();
    #endif
    #if defined(MICROPY_HW_SPI6_SCK)
    } else if (spi->Instance == SPI6) {
        #if defined(MICROPY_HW_SPI6_NSS)
        pins[0] = MICROPY_HW_SPI6_NSS;
        #endif
        pins[1] = MICROPY_HW_SPI6_SCK;
        #if defined(MICROPY_HW_SPI6_MISO)
        pins[2] = MICROPY_HW_SPI6_MISO;
        #endif
        pins[3] = MICROPY_HW_SPI6_MOSI;
        // enable the SPI clock
        __HAL_RCC_SPI6_CLK_ENABLE();
    #endif
    } else {
        // SPI does not exist for this board (shouldn't get here, should be checked by caller)
        return;
    }

    // init the GPIO lines
    uint32_t mode = MP_HAL_PIN_MODE_ALT;
    uint32_t pull = spi->Init.CLKPolarity == SPI_POLARITY_LOW ? MP_HAL_PIN_PULL_DOWN : MP_HAL_PIN_PULL_UP;
    for (uint i = (enable_nss_pin ? 0 : 1); i < 4; i++) {
        if (pins[i] == NULL) {
            continue;
        }
        mp_hal_pin_config_alt(pins[i], mode, pull, AF_FN_SPI, (self - &spi_obj[0]) + 1);
    }

    // init the SPI device
    if (HAL_SPI_Init(spi) != HAL_OK) {
        // init error
        // TODO should raise an exception, but this function is not necessarily going to be
        // called via Python, so may not be properly wrapped in an NLR handler
        printf("OSError: HAL_SPI_Init failed\n");
        return;
    }

    // After calling HAL_SPI_Init() it seems that the DMA gets disconnected if
    // it was previously configured.  So we invalidate the DMA channel to force
    // an initialisation the next time we use it.
    dma_invalidate_channel(self->tx_dma_descr);
    dma_invalidate_channel(self->rx_dma_descr);
}

void spi_deinit(const spi_t *spi_obj) {
    SPI_HandleTypeDef *spi = spi_obj->spi;
    HAL_SPI_DeInit(spi);
    if (0) {
    #if defined(MICROPY_HW_SPI1_SCK)
    } else if (spi->Instance == SPI1) {
        __HAL_RCC_SPI1_FORCE_RESET();
        __HAL_RCC_SPI1_RELEASE_RESET();
        __HAL_RCC_SPI1_CLK_DISABLE();
    #endif
    #if defined(MICROPY_HW_SPI2_SCK)
    } else if (spi->Instance == SPI2) {
        __HAL_RCC_SPI2_FORCE_RESET();
        __HAL_RCC_SPI2_RELEASE_RESET();
        __HAL_RCC_SPI2_CLK_DISABLE();
    #endif
    #if defined(MICROPY_HW_SPI3_SCK)
    } else if (spi->Instance == SPI3) {
        __HAL_RCC_SPI3_FORCE_RESET();
        __HAL_RCC_SPI3_RELEASE_RESET();
        __HAL_RCC_SPI3_CLK_DISABLE();
    #endif
    #if defined(MICROPY_HW_SPI4_SCK)
    } else if (spi->Instance == SPI4) {
        __HAL_RCC_SPI4_FORCE_RESET();
        __HAL_RCC_SPI4_RELEASE_RESET();
        __HAL_RCC_SPI4_CLK_DISABLE();
    #endif
    #if defined(MICROPY_HW_SPI5_SCK)
    } else if (spi->Instance == SPI5) {
        __HAL_RCC_SPI5_FORCE_RESET();
        __HAL_RCC_SPI5_RELEASE_RESET();
        __HAL_RCC_SPI5_CLK_DISABLE();
    #endif
    #if defined(MICROPY_HW_SPI6_SCK)
    } else if (spi->Instance == SPI6) {
        __HAL_RCC_SPI6_FORCE_RESET();
        __HAL_RCC_SPI6_RELEASE_RESET();
        __HAL_RCC_SPI6_CLK_DISABLE();
    #endif
    }
}

STATIC HAL_StatusTypeDef spi_wait_dma_finished(const spi_t *spi, uint32_t t_start, uint32_t timeout) {
    volatile HAL_SPI_StateTypeDef *state = &spi->spi->State;
    for (;;) {
        // Do an atomic check of the state; WFI will exit even if IRQs are disabled
        uint32_t irq_state = disable_irq();
        if (*state == HAL_SPI_STATE_READY) {
            enable_irq(irq_state);
            return HAL_OK;
        }
        __WFI();
        enable_irq(irq_state);
        if (HAL_GetTick() - t_start >= timeout) {
            return HAL_TIMEOUT;
        }
    }
    return HAL_OK;
}

// A transfer of "len" bytes should take len*8*1000/baudrate milliseconds.
// To simplify the calculation we assume the baudrate is never less than 8kHz
// and use that value for the baudrate in the formula, plus a small constant.
#define SPI_TRANSFER_TIMEOUT(len) ((len) + 100)

STATIC void spi_transfer(const spi_t *self, size_t len, const uint8_t *src, uint8_t *dest, uint32_t timeout) {
    // Note: there seems to be a problem sending 1 byte using DMA the first
    // time directly after the SPI/DMA is initialised.  The cause of this is
    // unknown but we sidestep the issue by using polling for 1 byte transfer.

    // Note: DMA transfers are limited to 65535 bytes at a time.

    HAL_StatusTypeDef status;

    if (dest == NULL) {
        // send only
        if (len == 1 || query_irq() == IRQ_STATE_DISABLED) {
            status = HAL_SPI_Transmit(self->spi, (uint8_t*)src, len, timeout);
        } else {
            DMA_HandleTypeDef tx_dma;
            dma_init(&tx_dma, self->tx_dma_descr, self->spi);
            self->spi->hdmatx = &tx_dma;
            self->spi->hdmarx = NULL;
            MP_HAL_CLEAN_DCACHE(src, len);
            uint32_t t_start = HAL_GetTick();
            do {
                uint32_t l = MIN(len, 65535);
                status = HAL_SPI_Transmit_DMA(self->spi, (uint8_t*)src, l);
                if (status != HAL_OK) {
                    break;
                }
                status = spi_wait_dma_finished(self, t_start, timeout);
                if (status != HAL_OK) {
                    break;
                }
                len -= l;
                src += l;
            } while (len);
            dma_deinit(self->tx_dma_descr);
        }
    } else if (src == NULL) {
        // receive only
        if (len == 1 || query_irq() == IRQ_STATE_DISABLED) {
            status = HAL_SPI_Receive(self->spi, dest, len, timeout);
        } else {
            DMA_HandleTypeDef tx_dma, rx_dma;
            if (self->spi->Init.Mode == SPI_MODE_MASTER) {
                // in master mode the HAL actually does a TransmitReceive call
                dma_init(&tx_dma, self->tx_dma_descr, self->spi);
                self->spi->hdmatx = &tx_dma;
            } else {
                self->spi->hdmatx = NULL;
            }
            dma_init(&rx_dma, self->rx_dma_descr, self->spi);
            self->spi->hdmarx = &rx_dma;
            MP_HAL_CLEANINVALIDATE_DCACHE(dest, len);
            uint32_t t_start = HAL_GetTick();
            do {
                uint32_t l = MIN(len, 65535);
                status = HAL_SPI_Receive_DMA(self->spi, dest, l);
                if (status != HAL_OK) {
                    break;
                }
                status = spi_wait_dma_finished(self, t_start, timeout);
                if (status != HAL_OK) {
                    break;
                }
                len -= l;
                dest += l;
            } while (len);
            if (self->spi->hdmatx != NULL) {
                dma_deinit(self->tx_dma_descr);
            }
            dma_deinit(self->rx_dma_descr);
        }
    } else {
        // send and receive
        if (len == 1 || query_irq() == IRQ_STATE_DISABLED) {
            status = HAL_SPI_TransmitReceive(self->spi, (uint8_t*)src, dest, len, timeout);
        } else {
            DMA_HandleTypeDef tx_dma, rx_dma;
            dma_init(&tx_dma, self->tx_dma_descr, self->spi);
            self->spi->hdmatx = &tx_dma;
            dma_init(&rx_dma, self->rx_dma_descr, self->spi);
            self->spi->hdmarx = &rx_dma;
            MP_HAL_CLEAN_DCACHE(src, len);
            MP_HAL_CLEANINVALIDATE_DCACHE(dest, len);
            uint32_t t_start = HAL_GetTick();
            do {
                uint32_t l = MIN(len, 65535);
                status = HAL_SPI_TransmitReceive_DMA(self->spi, (uint8_t*)src, dest, l);
                if (status != HAL_OK) {
                    break;
                }
                status = spi_wait_dma_finished(self, t_start, timeout);
                if (status != HAL_OK) {
                    break;
                }
                len -= l;
                src += l;
                dest += l;
            } while (len);
            dma_deinit(self->tx_dma_descr);
            dma_deinit(self->rx_dma_descr);
        }
    }

    if (status != HAL_OK) {
        mp_hal_raise(status);
    }
}

STATIC void spi_print(const mp_print_t *print, const spi_t *spi_obj, bool legacy) {
    SPI_HandleTypeDef *spi = spi_obj->spi;

    uint spi_num = 1; // default to SPI1
    if (spi->Instance == SPI2) { spi_num = 2; }
    #if defined(SPI3)
    else if (spi->Instance == SPI3) { spi_num = 3; }
    #endif
    #if defined(SPI4)
    else if (spi->Instance == SPI4) { spi_num = 4; }
    #endif
    #if defined(SPI5)
    else if (spi->Instance == SPI5) { spi_num = 5; }
    #endif
    #if defined(SPI6)
    else if (spi->Instance == SPI6) { spi_num = 6; }
    #endif

    mp_printf(print, "SPI(%u", spi_num);
    if (spi->State != HAL_SPI_STATE_RESET) {
        if (spi->Init.Mode == SPI_MODE_MASTER) {
            // compute baudrate
            uint spi_clock;
            #if defined(STM32F0)
            spi_clock = HAL_RCC_GetPCLK1Freq();
            #else
            if (spi->Instance == SPI2 || spi->Instance == SPI3) {
                // SPI2 and SPI3 are on APB1
                spi_clock = HAL_RCC_GetPCLK1Freq();
            } else {
                // SPI1, SPI4, SPI5 and SPI6 are on APB2
                spi_clock = HAL_RCC_GetPCLK2Freq();
            }
            #endif
            uint log_prescaler = (spi->Init.BaudRatePrescaler >> 3) + 1;
            uint baudrate = spi_clock >> log_prescaler;
            if (legacy) {
                mp_printf(print, ", SPI.MASTER");
            }
            mp_printf(print, ", baudrate=%u", baudrate);
            if (legacy) {
                mp_printf(print, ", prescaler=%u", 1 << log_prescaler);
            }
        } else {
            mp_printf(print, ", SPI.SLAVE");
        }
        mp_printf(print, ", polarity=%u, phase=%u, bits=%u", spi->Init.CLKPolarity == SPI_POLARITY_LOW ? 0 : 1, spi->Init.CLKPhase == SPI_PHASE_1EDGE ? 0 : 1, spi->Init.DataSize == SPI_DATASIZE_8BIT ? 8 : 16);
        if (spi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) {
            mp_printf(print, ", crc=0x%x", spi->Init.CRCPolynomial);
        }
    }
    mp_print_str(print, ")");
}

/******************************************************************************/
/* MicroPython bindings for legacy pyb API                                    */

typedef struct _pyb_spi_obj_t {
    mp_obj_base_t base;
    const spi_t *spi;
} pyb_spi_obj_t;

STATIC const pyb_spi_obj_t pyb_spi_obj[] = {
    {{&pyb_spi_type}, &spi_obj[0]},
    {{&pyb_spi_type}, &spi_obj[1]},
    {{&pyb_spi_type}, &spi_obj[2]},
    {{&pyb_spi_type}, &spi_obj[3]},
    {{&pyb_spi_type}, &spi_obj[4]},
    {{&pyb_spi_type}, &spi_obj[5]},
};

STATIC void pyb_spi_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
    pyb_spi_obj_t *self = self_in;
    spi_print(print, self->spi, true);
}

/// \method init(mode, baudrate=328125, *, polarity=1, phase=0, bits=8, firstbit=SPI.MSB, ti=False, crc=None)
///
/// Initialise the SPI bus with the given parameters:
///
///   - `mode` must be either `SPI.MASTER` or `SPI.SLAVE`.
///   - `baudrate` is the SCK clock rate (only sensible for a master).
STATIC mp_obj_t pyb_spi_init_helper(const pyb_spi_obj_t *self, size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
    static const mp_arg_t allowed_args[] = {
        { MP_QSTR_mode,     MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 0} },
        { MP_QSTR_baudrate, MP_ARG_INT, {.u_int = 328125} },
        { MP_QSTR_prescaler, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0xffffffff} },
        { MP_QSTR_polarity, MP_ARG_KW_ONLY | MP_ARG_INT,  {.u_int = 1} },
        { MP_QSTR_phase,    MP_ARG_KW_ONLY | MP_ARG_INT,  {.u_int = 0} },
        { MP_QSTR_dir,      MP_ARG_KW_ONLY | MP_ARG_INT,  {.u_int = SPI_DIRECTION_2LINES} },
        { MP_QSTR_bits,     MP_ARG_KW_ONLY | MP_ARG_INT,  {.u_int = 8} },
        { MP_QSTR_nss,      MP_ARG_KW_ONLY | MP_ARG_INT,  {.u_int = SPI_NSS_SOFT} },
        { MP_QSTR_firstbit, MP_ARG_KW_ONLY | MP_ARG_INT,  {.u_int = SPI_FIRSTBIT_MSB} },
        { MP_QSTR_ti,       MP_ARG_KW_ONLY | MP_ARG_BOOL, {.u_bool = false} },
        { MP_QSTR_crc,      MP_ARG_KW_ONLY | MP_ARG_OBJ,  {.u_obj = mp_const_none} },
    };

    // parse args
    mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
    mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);

    // set the SPI configuration values
    SPI_InitTypeDef *init = &self->spi->spi->Init;
    init->Mode = args[0].u_int;

    spi_set_params(self->spi, args[2].u_int, args[1].u_int, args[3].u_int, args[4].u_int,
        args[6].u_int, args[8].u_int);

    init->Direction = args[5].u_int;
    init->NSS = args[7].u_int;
    init->TIMode = args[9].u_bool ? SPI_TIMODE_ENABLE : SPI_TIMODE_DISABLE;
    if (args[10].u_obj == mp_const_none) {
        init->CRCCalculation = SPI_CRCCALCULATION_DISABLE;
        init->CRCPolynomial = 0;
    } else {
        init->CRCCalculation = SPI_CRCCALCULATION_ENABLE;
        init->CRCPolynomial = mp_obj_get_int(args[10].u_obj);
    }

    // init the SPI bus
    spi_init(self->spi, init->NSS != SPI_NSS_SOFT);

    return mp_const_none;
}

/// \classmethod \constructor(bus, ...)
///
/// Construct an SPI object on the given bus.  `bus` can be 1 or 2.
/// With no additional parameters, the SPI object is created but not
/// initialised (it has the settings from the last initialisation of
/// the bus, if any).  If extra arguments are given, the bus is initialised.
/// See `init` for parameters of initialisation.
///
/// The physical pins of the SPI busses are:
///
///   - `SPI(1)` is on the X position: `(NSS, SCK, MISO, MOSI) = (X5, X6, X7, X8) = (PA4, PA5, PA6, PA7)`
///   - `SPI(2)` is on the Y position: `(NSS, SCK, MISO, MOSI) = (Y5, Y6, Y7, Y8) = (PB12, PB13, PB14, PB15)`
///
/// At the moment, the NSS pin is not used by the SPI driver and is free
/// for other use.
STATIC mp_obj_t pyb_spi_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
    // check arguments
    mp_arg_check_num(n_args, n_kw, 1, MP_OBJ_FUN_ARGS_MAX, true);

    // work out SPI bus
    int spi_id = spi_find(args[0]);

    // get SPI object
    const pyb_spi_obj_t *spi_obj = &pyb_spi_obj[spi_id - 1];

    if (n_args > 1 || n_kw > 0) {
        // start the peripheral
        mp_map_t kw_args;
        mp_map_init_fixed_table(&kw_args, n_kw, args + n_args);
        pyb_spi_init_helper(spi_obj, n_args - 1, args + 1, &kw_args);
    }

    return (mp_obj_t)spi_obj;
}

STATIC mp_obj_t pyb_spi_init(size_t n_args, const mp_obj_t *args, mp_map_t *kw_args) {
    return pyb_spi_init_helper(args[0], n_args - 1, args + 1, kw_args);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_spi_init_obj, 1, pyb_spi_init);

/// \method deinit()
/// Turn off the SPI bus.
STATIC mp_obj_t pyb_spi_deinit(mp_obj_t self_in) {
    pyb_spi_obj_t *self = self_in;
    spi_deinit(self->spi);
    return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_spi_deinit_obj, pyb_spi_deinit);

/// \method send(send, *, timeout=5000)
/// Send data on the bus:
///
///   - `send` is the data to send (an integer to send, or a buffer object).
///   - `timeout` is the timeout in milliseconds to wait for the send.
///
/// Return value: `None`.
STATIC mp_obj_t pyb_spi_send(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
    // TODO assumes transmission size is 8-bits wide

    static const mp_arg_t allowed_args[] = {
        { MP_QSTR_send,    MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
        { MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 5000} },
    };

    // parse args
    pyb_spi_obj_t *self = pos_args[0];
    mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
    mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);

    // get the buffer to send from
    mp_buffer_info_t bufinfo;
    uint8_t data[1];
    pyb_buf_get_for_send(args[0].u_obj, &bufinfo, data);

    // send the data
    spi_transfer(self->spi, bufinfo.len, bufinfo.buf, NULL, args[1].u_int);

    return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_spi_send_obj, 1, pyb_spi_send);

/// \method recv(recv, *, timeout=5000)
///
/// Receive data on the bus:
///
///   - `recv` can be an integer, which is the number of bytes to receive,
///     or a mutable buffer, which will be filled with received bytes.
///   - `timeout` is the timeout in milliseconds to wait for the receive.
///
/// Return value: if `recv` is an integer then a new buffer of the bytes received,
/// otherwise the same buffer that was passed in to `recv`.
STATIC mp_obj_t pyb_spi_recv(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
    // TODO assumes transmission size is 8-bits wide

    static const mp_arg_t allowed_args[] = {
        { MP_QSTR_recv,    MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
        { MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 5000} },
    };

    // parse args
    pyb_spi_obj_t *self = pos_args[0];
    mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
    mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);

    // get the buffer to receive into
    vstr_t vstr;
    mp_obj_t o_ret = pyb_buf_get_for_recv(args[0].u_obj, &vstr);

    // receive the data
    spi_transfer(self->spi, vstr.len, NULL, (uint8_t*)vstr.buf, args[1].u_int);

    // return the received data
    if (o_ret != MP_OBJ_NULL) {
        return o_ret;
    } else {
        return mp_obj_new_str_from_vstr(&mp_type_bytes, &vstr);
    }
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_spi_recv_obj, 1, pyb_spi_recv);

/// \method send_recv(send, recv=None, *, timeout=5000)
///
/// Send and receive data on the bus at the same time:
///
///   - `send` is the data to send (an integer to send, or a buffer object).
///   - `recv` is a mutable buffer which will be filled with received bytes.
///   It can be the same as `send`, or omitted.  If omitted, a new buffer will
///   be created.
///   - `timeout` is the timeout in milliseconds to wait for the receive.
///
/// Return value: the buffer with the received bytes.
STATIC mp_obj_t pyb_spi_send_recv(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
    // TODO assumes transmission size is 8-bits wide

    static const mp_arg_t allowed_args[] = {
        { MP_QSTR_send,    MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
        { MP_QSTR_recv,    MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
        { MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 5000} },
    };

    // parse args
    pyb_spi_obj_t *self = pos_args[0];
    mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
    mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);

    // get buffers to send from/receive to
    mp_buffer_info_t bufinfo_send;
    uint8_t data_send[1];
    mp_buffer_info_t bufinfo_recv;
    vstr_t vstr_recv;
    mp_obj_t o_ret;

    if (args[0].u_obj == args[1].u_obj) {
        // same object for send and receive, it must be a r/w buffer
        mp_get_buffer_raise(args[0].u_obj, &bufinfo_send, MP_BUFFER_RW);
        bufinfo_recv = bufinfo_send;
        o_ret = args[0].u_obj;
    } else {
        // get the buffer to send from
        pyb_buf_get_for_send(args[0].u_obj, &bufinfo_send, data_send);

        // get the buffer to receive into
        if (args[1].u_obj == MP_OBJ_NULL) {
            // only send argument given, so create a fresh buffer of the send length
            vstr_init_len(&vstr_recv, bufinfo_send.len);
            bufinfo_recv.len = vstr_recv.len;
            bufinfo_recv.buf = vstr_recv.buf;
            o_ret = MP_OBJ_NULL;
        } else {
            // recv argument given
            mp_get_buffer_raise(args[1].u_obj, &bufinfo_recv, MP_BUFFER_WRITE);
            if (bufinfo_recv.len != bufinfo_send.len) {
                mp_raise_ValueError("recv must be same length as send");
            }
            o_ret = args[1].u_obj;
        }
    }

    // do the transfer
    spi_transfer(self->spi, bufinfo_send.len, bufinfo_send.buf, bufinfo_recv.buf, args[2].u_int);

    // return the received data
    if (o_ret != MP_OBJ_NULL) {
        return o_ret;
    } else {
        return mp_obj_new_str_from_vstr(&mp_type_bytes, &vstr_recv);
    }
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_spi_send_recv_obj, 1, pyb_spi_send_recv);

STATIC const mp_rom_map_elem_t pyb_spi_locals_dict_table[] = {
    // instance methods
    { MP_ROM_QSTR(MP_QSTR_init), MP_ROM_PTR(&pyb_spi_init_obj) },
    { MP_ROM_QSTR(MP_QSTR_deinit), MP_ROM_PTR(&pyb_spi_deinit_obj) },

    { MP_ROM_QSTR(MP_QSTR_read), MP_ROM_PTR(&mp_machine_spi_read_obj) },
    { MP_ROM_QSTR(MP_QSTR_readinto), MP_ROM_PTR(&mp_machine_spi_readinto_obj) },
    { MP_ROM_QSTR(MP_QSTR_write), MP_ROM_PTR(&mp_machine_spi_write_obj) },
    { MP_ROM_QSTR(MP_QSTR_write_readinto), MP_ROM_PTR(&mp_machine_spi_write_readinto_obj) },

    // legacy methods
    { MP_ROM_QSTR(MP_QSTR_send), MP_ROM_PTR(&pyb_spi_send_obj) },
    { MP_ROM_QSTR(MP_QSTR_recv), MP_ROM_PTR(&pyb_spi_recv_obj) },
    { MP_ROM_QSTR(MP_QSTR_send_recv), MP_ROM_PTR(&pyb_spi_send_recv_obj) },

    // class constants
    /// \constant MASTER - for initialising the bus to master mode
    /// \constant SLAVE - for initialising the bus to slave mode
    /// \constant MSB - set the first bit to MSB
    /// \constant LSB - set the first bit to LSB
    { MP_ROM_QSTR(MP_QSTR_MASTER), MP_ROM_INT(SPI_MODE_MASTER) },
    { MP_ROM_QSTR(MP_QSTR_SLAVE),  MP_ROM_INT(SPI_MODE_SLAVE) },
    { MP_ROM_QSTR(MP_QSTR_MSB),    MP_ROM_INT(SPI_FIRSTBIT_MSB) },
    { MP_ROM_QSTR(MP_QSTR_LSB),    MP_ROM_INT(SPI_FIRSTBIT_LSB) },
    /* TODO
    { MP_ROM_QSTR(MP_QSTR_DIRECTION_2LINES             ((uint32_t)0x00000000)
    { MP_ROM_QSTR(MP_QSTR_DIRECTION_2LINES_RXONLY      SPI_CR1_RXONLY
    { MP_ROM_QSTR(MP_QSTR_DIRECTION_1LINE              SPI_CR1_BIDIMODE
    { MP_ROM_QSTR(MP_QSTR_NSS_SOFT                    SPI_CR1_SSM
    { MP_ROM_QSTR(MP_QSTR_NSS_HARD_INPUT              ((uint32_t)0x00000000)
    { MP_ROM_QSTR(MP_QSTR_NSS_HARD_OUTPUT             ((uint32_t)0x00040000)
    */
};

STATIC MP_DEFINE_CONST_DICT(pyb_spi_locals_dict, pyb_spi_locals_dict_table);

STATIC void spi_transfer_machine(mp_obj_base_t *self_in, size_t len, const uint8_t *src, uint8_t *dest) {
    pyb_spi_obj_t *self = (pyb_spi_obj_t*)self_in;
    spi_transfer(self->spi, len, src, dest, SPI_TRANSFER_TIMEOUT(len));
}

STATIC const mp_machine_spi_p_t pyb_spi_p = {
    .transfer = spi_transfer_machine,
};

const mp_obj_type_t pyb_spi_type = {
    { &mp_type_type },
    .name = MP_QSTR_SPI,
    .print = pyb_spi_print,
    .make_new = pyb_spi_make_new,
    .protocol = &pyb_spi_p,
    .locals_dict = (mp_obj_dict_t*)&pyb_spi_locals_dict,
};

/******************************************************************************/
// Implementation of hard SPI for machine module

typedef struct _machine_hard_spi_obj_t {
    mp_obj_base_t base;
    const spi_t *spi;
} machine_hard_spi_obj_t;

STATIC const machine_hard_spi_obj_t machine_hard_spi_obj[] = {
    {{&machine_hard_spi_type}, &spi_obj[0]},
    {{&machine_hard_spi_type}, &spi_obj[1]},
    {{&machine_hard_spi_type}, &spi_obj[2]},
    {{&machine_hard_spi_type}, &spi_obj[3]},
    {{&machine_hard_spi_type}, &spi_obj[4]},
    {{&machine_hard_spi_type}, &spi_obj[5]},
};

STATIC void machine_hard_spi_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
    machine_hard_spi_obj_t *self = (machine_hard_spi_obj_t*)self_in;
    spi_print(print, self->spi, false);
}

mp_obj_t machine_hard_spi_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *all_args) {
    enum { ARG_id, ARG_baudrate, ARG_polarity, ARG_phase, ARG_bits, ARG_firstbit, ARG_sck, ARG_mosi, ARG_miso };
    static const mp_arg_t allowed_args[] = {
        { MP_QSTR_id,       MP_ARG_OBJ, {.u_obj = MP_OBJ_NEW_SMALL_INT(-1)} },
        { MP_QSTR_baudrate, MP_ARG_INT, {.u_int = 500000} },
        { MP_QSTR_polarity, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
        { MP_QSTR_phase,    MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
        { MP_QSTR_bits,     MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 8} },
        { MP_QSTR_firstbit, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = SPI_FIRSTBIT_MSB} },
        { MP_QSTR_sck,      MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
        { MP_QSTR_mosi,     MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
        { MP_QSTR_miso,     MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
    };
    mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
    mp_arg_parse_all_kw_array(n_args, n_kw, all_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);

    // get static peripheral object
    int spi_id = spi_find(args[ARG_id].u_obj);
    const machine_hard_spi_obj_t *self = &machine_hard_spi_obj[spi_id - 1];

    // here we would check the sck/mosi/miso pins and configure them, but it's not implemented
    if (args[ARG_sck].u_obj != MP_OBJ_NULL
        || args[ARG_mosi].u_obj != MP_OBJ_NULL
        || args[ARG_miso].u_obj != MP_OBJ_NULL) {
        mp_raise_ValueError("explicit choice of sck/mosi/miso is not implemented");
    }

    // set the SPI configuration values
    SPI_InitTypeDef *init = &self->spi->spi->Init;
    init->Mode = SPI_MODE_MASTER;

    // these parameters are not currently configurable
    init->Direction = SPI_DIRECTION_2LINES;
    init->NSS = SPI_NSS_SOFT;
    init->TIMode = SPI_TIMODE_DISABLE;
    init->CRCCalculation = SPI_CRCCALCULATION_DISABLE;
    init->CRCPolynomial = 0;

    // set configurable paramaters
    spi_set_params(self->spi, 0xffffffff, args[ARG_baudrate].u_int,
        args[ARG_polarity].u_int, args[ARG_phase].u_int, args[ARG_bits].u_int,
        args[ARG_firstbit].u_int);

    // init the SPI bus
    spi_init(self->spi, false);

    return MP_OBJ_FROM_PTR(self);
}

STATIC void machine_hard_spi_init(mp_obj_base_t *self_in, size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
    machine_hard_spi_obj_t *self = (machine_hard_spi_obj_t*)self_in;

    enum { ARG_baudrate, ARG_polarity, ARG_phase, ARG_bits, ARG_firstbit };
    static const mp_arg_t allowed_args[] = {
        { MP_QSTR_baudrate, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
        { MP_QSTR_polarity, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
        { MP_QSTR_phase,    MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
        { MP_QSTR_bits,     MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
        { MP_QSTR_firstbit, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
    };
    mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
    mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);

    // set the SPI configuration values
    spi_set_params(self->spi, 0xffffffff, args[ARG_baudrate].u_int,
        args[ARG_polarity].u_int, args[ARG_phase].u_int, args[ARG_bits].u_int,
        args[ARG_firstbit].u_int);

    // re-init the SPI bus
    spi_init(self->spi, false);
}

STATIC void machine_hard_spi_deinit(mp_obj_base_t *self_in) {
    machine_hard_spi_obj_t *self = (machine_hard_spi_obj_t*)self_in;
    spi_deinit(self->spi);
}

STATIC void machine_hard_spi_transfer(mp_obj_base_t *self_in, size_t len, const uint8_t *src, uint8_t *dest) {
    machine_hard_spi_obj_t *self = (machine_hard_spi_obj_t*)self_in;
    spi_transfer(self->spi, len, src, dest, SPI_TRANSFER_TIMEOUT(len));
}

STATIC const mp_machine_spi_p_t machine_hard_spi_p = {
    .init = machine_hard_spi_init,
    .deinit = machine_hard_spi_deinit,
    .transfer = machine_hard_spi_transfer,
};

const mp_obj_type_t machine_hard_spi_type = {
    { &mp_type_type },
    .name = MP_QSTR_SPI,
    .print = machine_hard_spi_print,
    .make_new = mp_machine_spi_make_new, // delegate to master constructor
    .protocol = &machine_hard_spi_p,
    .locals_dict = (mp_obj_t)&mp_machine_spi_locals_dict,
};

const spi_t *spi_from_mp_obj(mp_obj_t o) {
    if (MP_OBJ_IS_TYPE(o, &pyb_spi_type)) {
        pyb_spi_obj_t *self = o;
        return self->spi;
    } else if (MP_OBJ_IS_TYPE(o, &machine_hard_spi_type)) {
        machine_hard_spi_obj_t *self = o;;
        return self->spi;
    } else {
        mp_raise_TypeError("expecting an SPI object");
    }
}