CircuitPython

Source code browser

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
/*
 * This file is part of the MicroPython project, http://micropython.org/
 *
 * The MIT License (MIT)
 *
 * Copyright (c) 2013, 2014 Damien P. George
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

#include <stdio.h>
#include <string.h>
#include <stdarg.h>

//#include "py/ioctl.h"
//#include "py/nlr.h"
#include "py/runtime.h"
#include "py/stream.h"
#include "py/mperrno.h"
#include "py/mphal.h"
#include "lib/utils/interrupt_char.h"
#include "uart.h"
#include "irq.h"
#include "pendsv.h"

/// \moduleref pyb
/// \class UART - duplex serial communication bus
///
/// UART implements the standard UART/USART duplex serial communications protocol.  At
/// the physical level it consists of 2 lines: RX and TX.  The unit of communication
/// is a character (not to be confused with a string character) which can be 8 or 9
/// bits wide.
///
/// UART objects can be created and initialised using:
///
///     from pyb import UART
///
///     uart = UART(1, 9600)                         # init with given baudrate
///     uart.init(9600, bits=8, parity=None, stop=1) # init with given parameters
///
/// Bits can be 8 or 9.  Parity can be None, 0 (even) or 1 (odd).  Stop can be 1 or 2.
///
/// A UART object acts like a stream object and reading and writing is done
/// using the standard stream methods:
///
///     uart.read(10)       # read 10 characters, returns a bytes object
///     uart.read()         # read all available characters
///     uart.readline()     # read a line
///     uart.readinto(buf)  # read and store into the given buffer
///     uart.write('abc')   # write the 3 characters
///
/// Individual characters can be read/written using:
///
///     uart.readchar()     # read 1 character and returns it as an integer
///     uart.writechar(42)  # write 1 character
///
/// To check if there is anything to be read, use:
///
///     uart.any()               # returns True if any characters waiting

#define CHAR_WIDTH_8BIT (0)
#define CHAR_WIDTH_9BIT (1)

struct _pyb_uart_obj_t {
    mp_obj_base_t base;
    UART_HandleTypeDef uart;            // this is 17 words big
    IRQn_Type irqn;
    pyb_uart_t uart_id : 8;
    bool is_enabled : 1;
    bool attached_to_repl;              // whether the UART is attached to REPL
    byte char_width;                    // 0 for 7,8 bit chars, 1 for 9 bit chars
    uint16_t char_mask;                 // 0x7f for 7 bit, 0xff for 8 bit, 0x1ff for 9 bit
    uint16_t timeout;                   // timeout waiting for first char
    uint16_t timeout_char;              // timeout waiting between chars
    uint16_t read_buf_len;              // len in chars; buf can hold len-1 chars
    volatile uint16_t read_buf_head;    // indexes first empty slot
    uint16_t read_buf_tail;             // indexes first full slot (not full if equals head)
    byte *read_buf;                     // byte or uint16_t, depending on char size
};

STATIC mp_obj_t pyb_uart_deinit(mp_obj_t self_in);
extern void NORETURN __fatal_error(const char *msg);

void uart_init0(void) {
    #if defined(STM32H7)
    RCC_PeriphCLKInitTypeDef RCC_PeriphClkInit = {0};
    // Configure USART1/6 clock source
    RCC_PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_USART16;
    RCC_PeriphClkInit.Usart16ClockSelection = RCC_USART16CLKSOURCE_D2PCLK2;
    if (HAL_RCCEx_PeriphCLKConfig(&RCC_PeriphClkInit) != HAL_OK) {
        __fatal_error("HAL_RCCEx_PeriphCLKConfig");
    }

    // Configure USART2/3/4/5/7/8 clock source
    RCC_PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_USART234578;
    RCC_PeriphClkInit.Usart16ClockSelection = RCC_USART234578CLKSOURCE_D2PCLK1;
    if (HAL_RCCEx_PeriphCLKConfig(&RCC_PeriphClkInit) != HAL_OK) {
        __fatal_error("HAL_RCCEx_PeriphCLKConfig");
    }
    #endif

    for (int i = 0; i < MP_ARRAY_SIZE(MP_STATE_PORT(pyb_uart_obj_all)); i++) {
        MP_STATE_PORT(pyb_uart_obj_all)[i] = NULL;
    }
}

// unregister all interrupt sources
void uart_deinit(void) {
    for (int i = 0; i < MP_ARRAY_SIZE(MP_STATE_PORT(pyb_uart_obj_all)); i++) {
        pyb_uart_obj_t *uart_obj = MP_STATE_PORT(pyb_uart_obj_all)[i];
        if (uart_obj != NULL) {
            pyb_uart_deinit(uart_obj);
        }
    }
}

STATIC bool uart_exists(int uart_id) {
    if (uart_id > MP_ARRAY_SIZE(MP_STATE_PORT(pyb_uart_obj_all))) {
        // safeguard against pyb_uart_obj_all array being configured too small
        return false;
    }
    switch (uart_id) {
        #if defined(MICROPY_HW_UART1_TX) && defined(MICROPY_HW_UART1_RX)
        case PYB_UART_1: return true;
        #endif

        #if defined(MICROPY_HW_UART2_TX) && defined(MICROPY_HW_UART2_RX)
        case PYB_UART_2: return true;
        #endif

        #if defined(MICROPY_HW_UART3_TX) && defined(MICROPY_HW_UART3_RX)
        case PYB_UART_3: return true;
        #endif

        #if defined(MICROPY_HW_UART4_TX) && defined(MICROPY_HW_UART4_RX)
        case PYB_UART_4: return true;
        #endif

        #if defined(MICROPY_HW_UART5_TX) && defined(MICROPY_HW_UART5_RX)
        case PYB_UART_5: return true;
        #endif

        #if defined(MICROPY_HW_UART6_TX) && defined(MICROPY_HW_UART6_RX)
        case PYB_UART_6: return true;
        #endif

        #if defined(MICROPY_HW_UART7_TX) && defined(MICROPY_HW_UART7_RX)
        case PYB_UART_7: return true;
        #endif

        #if defined(MICROPY_HW_UART8_TX) && defined(MICROPY_HW_UART8_RX)
        case PYB_UART_8: return true;
        #endif

        default: return false;
    }
}

// assumes Init parameters have been set up correctly
STATIC bool uart_init2(pyb_uart_obj_t *uart_obj) {
    USART_TypeDef *UARTx;
    IRQn_Type irqn;
    int uart_unit;

    const pin_obj_t *pins[4] = {0};

    switch (uart_obj->uart_id) {
        #if defined(MICROPY_HW_UART1_TX) && defined(MICROPY_HW_UART1_RX)
        case PYB_UART_1:
            uart_unit = 1;
            UARTx = USART1;
            irqn = USART1_IRQn;
            pins[0] = MICROPY_HW_UART1_TX;
            pins[1] = MICROPY_HW_UART1_RX;
            __HAL_RCC_USART1_CLK_ENABLE();
            break;
        #endif

        #if defined(MICROPY_HW_UART2_TX) && defined(MICROPY_HW_UART2_RX)
        case PYB_UART_2:
            uart_unit = 2;
            UARTx = USART2;
            irqn = USART2_IRQn;
            pins[0] = MICROPY_HW_UART2_TX;
            pins[1] = MICROPY_HW_UART2_RX;
            #if defined(MICROPY_HW_UART2_RTS)
            if (uart_obj->uart.Init.HwFlowCtl & UART_HWCONTROL_RTS) {
                pins[2] = MICROPY_HW_UART2_RTS;
            }
            #endif
            #if defined(MICROPY_HW_UART2_CTS)
            if (uart_obj->uart.Init.HwFlowCtl & UART_HWCONTROL_CTS) {
                pins[3] = MICROPY_HW_UART2_CTS;
            }
            #endif
            __HAL_RCC_USART2_CLK_ENABLE();
            break;
        #endif

        #if defined(MICROPY_HW_UART3_TX) && defined(MICROPY_HW_UART3_RX)
        case PYB_UART_3:
            uart_unit = 3;
            UARTx = USART3;
            irqn = USART3_IRQn;
            pins[0] = MICROPY_HW_UART3_TX;
            pins[1] = MICROPY_HW_UART3_RX;
            #if defined(MICROPY_HW_UART3_RTS)
            if (uart_obj->uart.Init.HwFlowCtl & UART_HWCONTROL_RTS) {
                pins[2] = MICROPY_HW_UART3_RTS;
            }
            #endif
            #if defined(MICROPY_HW_UART3_CTS)
            if (uart_obj->uart.Init.HwFlowCtl & UART_HWCONTROL_CTS) {
                pins[3] = MICROPY_HW_UART3_CTS;
            }
            #endif
            __HAL_RCC_USART3_CLK_ENABLE();
            break;
        #endif

        #if defined(MICROPY_HW_UART4_TX) && defined(MICROPY_HW_UART4_RX)
        case PYB_UART_4:
            uart_unit = 4;
            UARTx = UART4;
            irqn = UART4_IRQn;
            pins[0] = MICROPY_HW_UART4_TX;
            pins[1] = MICROPY_HW_UART4_RX;
            __HAL_RCC_UART4_CLK_ENABLE();
            break;
        #endif

        #if defined(MICROPY_HW_UART5_TX) && defined(MICROPY_HW_UART5_RX)
        case PYB_UART_5:
            uart_unit = 5;
            UARTx = UART5;
            irqn = UART5_IRQn;
            pins[0] = MICROPY_HW_UART5_TX;
            pins[1] = MICROPY_HW_UART5_RX;
            __HAL_RCC_UART5_CLK_ENABLE();
            break;
        #endif

        #if defined(MICROPY_HW_UART6_TX) && defined(MICROPY_HW_UART6_RX)
        case PYB_UART_6:
            uart_unit = 6;
            UARTx = USART6;
            irqn = USART6_IRQn;
            pins[0] = MICROPY_HW_UART6_TX;
            pins[1] = MICROPY_HW_UART6_RX;
            #if defined(MICROPY_HW_UART6_RTS)
            if (uart_obj->uart.Init.HwFlowCtl & UART_HWCONTROL_RTS) {
                pins[2] = MICROPY_HW_UART6_RTS;
            }
            #endif
            #if defined(MICROPY_HW_UART6_CTS)
            if (uart_obj->uart.Init.HwFlowCtl & UART_HWCONTROL_CTS) {
                pins[3] = MICROPY_HW_UART6_CTS;
            }
            #endif
            __HAL_RCC_USART6_CLK_ENABLE();
            break;
        #endif

        #if defined(MICROPY_HW_UART7_TX) && defined(MICROPY_HW_UART7_RX)
        case PYB_UART_7:
            uart_unit = 7;
            UARTx = UART7;
            irqn = UART7_IRQn;
            pins[0] = MICROPY_HW_UART7_TX;
            pins[1] = MICROPY_HW_UART7_RX;
            __HAL_RCC_UART7_CLK_ENABLE();
            break;
        #endif

        #if defined(MICROPY_HW_UART8_TX) && defined(MICROPY_HW_UART8_RX)
        case PYB_UART_8:
            uart_unit = 8;
            #if defined(STM32F0)
            UARTx = USART8;
            irqn = USART3_8_IRQn;
            __HAL_RCC_USART8_CLK_ENABLE();
            #else
            UARTx = UART8;
            irqn = UART8_IRQn;
            __HAL_RCC_UART8_CLK_ENABLE();
            #endif
            pins[0] = MICROPY_HW_UART8_TX;
            pins[1] = MICROPY_HW_UART8_RX;
            break;
        #endif

        default:
            // UART does not exist or is not configured for this board
            return false;
    }

    uint32_t mode = MP_HAL_PIN_MODE_ALT;
    uint32_t pull = MP_HAL_PIN_PULL_UP;

    for (uint i = 0; i < 4; i++) {
        if (pins[i] != NULL) {
            bool ret = mp_hal_pin_config_alt(pins[i], mode, pull, AF_FN_UART, uart_unit);
            if (!ret) {
                return false;
            }
        }
    }

    uart_obj->irqn = irqn;
    uart_obj->uart.Instance = UARTx;

    // init UARTx
    HAL_UART_Init(&uart_obj->uart);

    uart_obj->is_enabled = true;
    uart_obj->attached_to_repl = false;

    return true;
}

void uart_attach_to_repl(pyb_uart_obj_t *self, bool attached) {
    self->attached_to_repl = attached;
}

/* obsolete and unused
bool uart_init(pyb_uart_obj_t *uart_obj, uint32_t baudrate) {
    UART_HandleTypeDef *uh = &uart_obj->uart;
    memset(uh, 0, sizeof(*uh));
    uh->Init.BaudRate = baudrate;
    uh->Init.WordLength = UART_WORDLENGTH_8B;
    uh->Init.StopBits = UART_STOPBITS_1;
    uh->Init.Parity = UART_PARITY_NONE;
    uh->Init.Mode = UART_MODE_TX_RX;
    uh->Init.HwFlowCtl = UART_HWCONTROL_NONE;
    uh->Init.OverSampling = UART_OVERSAMPLING_16;
    return uart_init2(uart_obj);
}
*/

mp_uint_t uart_rx_any(pyb_uart_obj_t *self) {
    int buffer_bytes = self->read_buf_head - self->read_buf_tail;
    if (buffer_bytes < 0) {
        return buffer_bytes + self->read_buf_len;
    } else if (buffer_bytes > 0) {
        return buffer_bytes;
    } else {
        return __HAL_UART_GET_FLAG(&self->uart, UART_FLAG_RXNE) != RESET;
    }
}

// Waits at most timeout milliseconds for at least 1 char to become ready for
// reading (from buf or for direct reading).
// Returns true if something available, false if not.
STATIC bool uart_rx_wait(pyb_uart_obj_t *self, uint32_t timeout) {
    uint32_t start = HAL_GetTick();
    for (;;) {
        if (self->read_buf_tail != self->read_buf_head || __HAL_UART_GET_FLAG(&self->uart, UART_FLAG_RXNE) != RESET) {
            return true; // have at least 1 char ready for reading
        }
        if (HAL_GetTick() - start >= timeout) {
            return false; // timeout
        }
        MICROPY_EVENT_POLL_HOOK
    }
}

// assumes there is a character available
int uart_rx_char(pyb_uart_obj_t *self) {
    if (self->read_buf_tail != self->read_buf_head) {
        // buffering via IRQ
        int data;
        if (self->char_width == CHAR_WIDTH_9BIT) {
            data = ((uint16_t*)self->read_buf)[self->read_buf_tail];
        } else {
            data = self->read_buf[self->read_buf_tail];
        }
        self->read_buf_tail = (self->read_buf_tail + 1) % self->read_buf_len;
        if (__HAL_UART_GET_FLAG(&self->uart, UART_FLAG_RXNE) != RESET) {
            // UART was stalled by flow ctrl: re-enable IRQ now we have room in buffer
            __HAL_UART_ENABLE_IT(&self->uart, UART_IT_RXNE);
        }
        return data;
    } else {
        // no buffering
        #if defined(STM32F0) || defined(STM32F7) || defined(STM32L4) || defined(STM32H7)
        return self->uart.Instance->RDR & self->char_mask;
        #else
        return self->uart.Instance->DR & self->char_mask;
        #endif
    }
}

// Waits at most timeout milliseconds for TX register to become empty.
// Returns true if can write, false if can't.
STATIC bool uart_tx_wait(pyb_uart_obj_t *self, uint32_t timeout) {
    uint32_t start = HAL_GetTick();
    for (;;) {
        if (__HAL_UART_GET_FLAG(&self->uart, UART_FLAG_TXE)) {
            return true; // tx register is empty
        }
        if (HAL_GetTick() - start >= timeout) {
            return false; // timeout
        }
        MICROPY_EVENT_POLL_HOOK
    }
}

// Waits at most timeout milliseconds for UART flag to be set.
// Returns true if flag is/was set, false on timeout.
STATIC bool uart_wait_flag_set(pyb_uart_obj_t *self, uint32_t flag, uint32_t timeout) {
    // Note: we don't use WFI to idle in this loop because UART tx doesn't generate
    // an interrupt and the flag can be set quickly if the baudrate is large.
    uint32_t start = HAL_GetTick();
    for (;;) {
        if (__HAL_UART_GET_FLAG(&self->uart, flag)) {
            return true;
        }
        if (timeout == 0 || HAL_GetTick() - start >= timeout) {
            return false; // timeout
        }
    }
}

// src - a pointer to the data to send (16-bit aligned for 9-bit chars)
// num_chars - number of characters to send (9-bit chars count for 2 bytes from src)
// *errcode - returns 0 for success, MP_Exxx on error
// returns the number of characters sent (valid even if there was an error)
STATIC size_t uart_tx_data(pyb_uart_obj_t *self, const void *src_in, size_t num_chars, int *errcode) {
    if (num_chars == 0) {
        *errcode = 0;
        return 0;
    }

    uint32_t timeout;
    if (self->uart.Init.HwFlowCtl & UART_HWCONTROL_CTS) {
        // CTS can hold off transmission for an arbitrarily long time. Apply
        // the overall timeout rather than the character timeout.
        timeout = self->timeout;
    } else {
        // The timeout specified here is for waiting for the TX data register to
        // become empty (ie between chars), as well as for the final char to be
        // completely transferred.  The default value for timeout_char is long
        // enough for 1 char, but we need to double it to wait for the last char
        // to be transferred to the data register, and then to be transmitted.
        timeout = 2 * self->timeout_char;
    }

    const uint8_t *src = (const uint8_t*)src_in;
    size_t num_tx = 0;
    USART_TypeDef *uart = self->uart.Instance;

    while (num_tx < num_chars) {
        if (!uart_wait_flag_set(self, UART_FLAG_TXE, timeout)) {
            *errcode = MP_ETIMEDOUT;
            return num_tx;
        }
        uint32_t data;
        if (self->char_width == CHAR_WIDTH_9BIT) {
            data = *((uint16_t*)src) & 0x1ff;
            src += 2;
        } else {
            data = *src++;
        }
        #if defined(STM32F4)
        uart->DR = data;
        #else
        uart->TDR = data;
        #endif
        ++num_tx;
    }

    // wait for the UART frame to complete
    if (!uart_wait_flag_set(self, UART_FLAG_TC, timeout)) {
        *errcode = MP_ETIMEDOUT;
        return num_tx;
    }

    *errcode = 0;
    return num_tx;
}

void uart_tx_strn(pyb_uart_obj_t *uart_obj, const char *str, uint len) {
    int errcode;
    uart_tx_data(uart_obj, str, len, &errcode);
}

// this IRQ handler is set up to handle RXNE interrupts only
void uart_irq_handler(mp_uint_t uart_id) {
    // get the uart object
    pyb_uart_obj_t *self = MP_STATE_PORT(pyb_uart_obj_all)[uart_id - 1];

    if (self == NULL) {
        // UART object has not been set, so we can't do anything, not
        // even disable the IRQ.  This should never happen.
        return;
    }

    if (__HAL_UART_GET_FLAG(&self->uart, UART_FLAG_RXNE) != RESET) {
        if (self->read_buf_len != 0) {
            uint16_t next_head = (self->read_buf_head + 1) % self->read_buf_len;
            if (next_head != self->read_buf_tail) {
                // only read data if room in buf
                #if defined(STM32F0) || defined(STM32F7) || defined(STM32L4) || defined(STM32H7)
                int data = self->uart.Instance->RDR; // clears UART_FLAG_RXNE
                #else
                int data = self->uart.Instance->DR; // clears UART_FLAG_RXNE
                #endif
                data &= self->char_mask;
                // Handle interrupt coming in on a UART REPL
                if (self->attached_to_repl && data == mp_interrupt_char) {
                    pendsv_kbd_intr();
                    return;
                }
                if (self->char_width == CHAR_WIDTH_9BIT) {
                    ((uint16_t*)self->read_buf)[self->read_buf_head] = data;
                } else {
                    self->read_buf[self->read_buf_head] = data;
                }
                self->read_buf_head = next_head;
            } else { // No room: leave char in buf, disable interrupt
                __HAL_UART_DISABLE_IT(&self->uart, UART_IT_RXNE);
            }
        }
    }
}

/******************************************************************************/
/* MicroPython bindings                                                       */

STATIC void pyb_uart_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
    pyb_uart_obj_t *self = self_in;
    if (!self->is_enabled) {
        mp_printf(print, "UART(%u)", self->uart_id);
    } else {
        mp_int_t bits;
        switch (self->uart.Init.WordLength) {
            #ifdef UART_WORDLENGTH_7B
            case UART_WORDLENGTH_7B: bits = 7; break;
            #endif
            case UART_WORDLENGTH_8B: bits = 8; break;
            case UART_WORDLENGTH_9B: default: bits = 9; break;
        }
        if (self->uart.Init.Parity != UART_PARITY_NONE) {
            bits -= 1;
        }
        mp_printf(print, "UART(%u, baudrate=%u, bits=%u, parity=",
            self->uart_id, self->uart.Init.BaudRate, bits);
        if (self->uart.Init.Parity == UART_PARITY_NONE) {
            mp_print_str(print, "None");
        } else {
            mp_printf(print, "%u", self->uart.Init.Parity == UART_PARITY_EVEN ? 0 : 1);
        }
        if (self->uart.Init.HwFlowCtl) {
            mp_printf(print, ", flow=");
            if (self->uart.Init.HwFlowCtl & UART_HWCONTROL_RTS) {
                mp_printf(print, "RTS%s", self->uart.Init.HwFlowCtl & UART_HWCONTROL_CTS ? "|" : "");
            }
            if (self->uart.Init.HwFlowCtl & UART_HWCONTROL_CTS) {
                mp_printf(print, "CTS");
            }
        }
        mp_printf(print, ", stop=%u, timeout=%u, timeout_char=%u, read_buf_len=%u)",
            self->uart.Init.StopBits == UART_STOPBITS_1 ? 1 : 2,
            self->timeout, self->timeout_char,
            self->read_buf_len == 0 ? 0 : self->read_buf_len - 1); // -1 to adjust for usable length of buffer
    }
}

/// \method init(baudrate, bits=8, parity=None, stop=1, *, timeout=1000, timeout_char=0, flow=0, read_buf_len=64)
///
/// Initialise the UART bus with the given parameters:
///
///   - `baudrate` is the clock rate.
///   - `bits` is the number of bits per byte, 7, 8 or 9.
///   - `parity` is the parity, `None`, 0 (even) or 1 (odd).
///   - `stop` is the number of stop bits, 1 or 2.
///   - `timeout` is the timeout in milliseconds to wait for the first character.
///   - `timeout_char` is the timeout in milliseconds to wait between characters.
///   - `flow` is RTS | CTS where RTS == 256, CTS == 512
///   - `read_buf_len` is the character length of the read buffer (0 to disable).
STATIC mp_obj_t pyb_uart_init_helper(pyb_uart_obj_t *self, size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
    static const mp_arg_t allowed_args[] = {
        { MP_QSTR_baudrate, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 9600} },
        { MP_QSTR_bits, MP_ARG_INT, {.u_int = 8} },
        { MP_QSTR_parity, MP_ARG_OBJ, {.u_obj = mp_const_none} },
        { MP_QSTR_stop, MP_ARG_INT, {.u_int = 1} },
        { MP_QSTR_flow, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = UART_HWCONTROL_NONE} },
        { MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 1000} },
        { MP_QSTR_timeout_char, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
        { MP_QSTR_read_buf_len, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 64} },
    };

    // parse args
    struct {
        mp_arg_val_t baudrate, bits, parity, stop, flow, timeout, timeout_char, read_buf_len;
    } args;
    mp_arg_parse_all(n_args, pos_args, kw_args,
        MP_ARRAY_SIZE(allowed_args), allowed_args, (mp_arg_val_t*)&args);

    // set the UART configuration values
    memset(&self->uart, 0, sizeof(self->uart));
    UART_InitTypeDef *init = &self->uart.Init;

    // baudrate
    init->BaudRate = args.baudrate.u_int;

    // parity
    mp_int_t bits = args.bits.u_int;
    if (args.parity.u_obj == mp_const_none) {
        init->Parity = UART_PARITY_NONE;
    } else {
        mp_int_t parity = mp_obj_get_int(args.parity.u_obj);
        init->Parity = (parity & 1) ? UART_PARITY_ODD : UART_PARITY_EVEN;
        bits += 1; // STs convention has bits including parity
    }

    // number of bits
    if (bits == 8) {
        init->WordLength = UART_WORDLENGTH_8B;
    } else if (bits == 9) {
        init->WordLength = UART_WORDLENGTH_9B;
    #ifdef UART_WORDLENGTH_7B
    } else if (bits == 7) {
        init->WordLength = UART_WORDLENGTH_7B;
    #endif
    } else {
        mp_raise_ValueError("unsupported combination of bits and parity");
    }

    // stop bits
    switch (args.stop.u_int) {
        case 1: init->StopBits = UART_STOPBITS_1; break;
        default: init->StopBits = UART_STOPBITS_2; break;
    }

    // flow control
    init->HwFlowCtl = args.flow.u_int;

    // extra config (not yet configurable)
    init->Mode = UART_MODE_TX_RX;
    init->OverSampling = UART_OVERSAMPLING_16;

    // init UART (if it fails, it's because the port doesn't exist)
    if (!uart_init2(self)) {
        nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "UART(%d) doesn't exist", self->uart_id));
    }

    // set timeout
    self->timeout = args.timeout.u_int;

    // set timeout_char
    // make sure it is at least as long as a whole character (13 bits to be safe)
    // minimum value is 2ms because sys-tick has a resolution of only 1ms
    self->timeout_char = args.timeout_char.u_int;
    uint32_t min_timeout_char = 13000 / init->BaudRate + 2;
    if (self->timeout_char < min_timeout_char) {
        self->timeout_char = min_timeout_char;
    }

    // setup the read buffer
    m_del(byte, self->read_buf, self->read_buf_len << self->char_width);
    if (init->WordLength == UART_WORDLENGTH_9B && init->Parity == UART_PARITY_NONE) {
        self->char_mask = 0x1ff;
        self->char_width = CHAR_WIDTH_9BIT;
    } else {
        if (init->WordLength == UART_WORDLENGTH_9B || init->Parity == UART_PARITY_NONE) {
            self->char_mask = 0xff;
        } else {
            self->char_mask = 0x7f;
        }
        self->char_width = CHAR_WIDTH_8BIT;
    }
    self->read_buf_head = 0;
    self->read_buf_tail = 0;
    if (args.read_buf_len.u_int <= 0) {
        // no read buffer
        self->read_buf_len = 0;
        self->read_buf = NULL;
        HAL_NVIC_DisableIRQ(self->irqn);
        __HAL_UART_DISABLE_IT(&self->uart, UART_IT_RXNE);
    } else {
        // read buffer using interrupts
        self->read_buf_len = args.read_buf_len.u_int + 1; // +1 to adjust for usable length of buffer
        self->read_buf = m_new(byte, self->read_buf_len << self->char_width);
        __HAL_UART_ENABLE_IT(&self->uart, UART_IT_RXNE);
        NVIC_SetPriority(IRQn_NONNEG(self->irqn), IRQ_PRI_UART);
        HAL_NVIC_EnableIRQ(self->irqn);
    }

    // compute actual baudrate that was configured
    // (this formula assumes UART_OVERSAMPLING_16)
    uint32_t actual_baudrate = 0;
    #if defined(STM32F0)
    actual_baudrate = HAL_RCC_GetPCLK1Freq();
    #elif defined(STM32F7) || defined(STM32H7)
    UART_ClockSourceTypeDef clocksource = UART_CLOCKSOURCE_UNDEFINED;
    UART_GETCLOCKSOURCE(&self->uart, clocksource);
    switch (clocksource) {
        #if defined(STM32H7)
        case UART_CLOCKSOURCE_D2PCLK1: actual_baudrate = HAL_RCC_GetPCLK1Freq(); break;
        case UART_CLOCKSOURCE_D3PCLK1: actual_baudrate = HAL_RCC_GetPCLK1Freq(); break;
        case UART_CLOCKSOURCE_D2PCLK2: actual_baudrate = HAL_RCC_GetPCLK2Freq(); break;
        #else
        case UART_CLOCKSOURCE_PCLK1:  actual_baudrate = HAL_RCC_GetPCLK1Freq(); break;
        case UART_CLOCKSOURCE_PCLK2:  actual_baudrate = HAL_RCC_GetPCLK2Freq(); break;
        case UART_CLOCKSOURCE_SYSCLK: actual_baudrate = HAL_RCC_GetSysClockFreq(); break;
        #endif
        #if defined(STM32H7)
        case UART_CLOCKSOURCE_CSI:    actual_baudrate = CSI_VALUE; break;
        #endif
        case UART_CLOCKSOURCE_HSI:    actual_baudrate = HSI_VALUE; break;
        case UART_CLOCKSOURCE_LSE:    actual_baudrate = LSE_VALUE; break;
        #if defined(STM32H7)
        case UART_CLOCKSOURCE_PLL2:
        case UART_CLOCKSOURCE_PLL3:
        #endif
        case UART_CLOCKSOURCE_UNDEFINED: break;
    }
    #else
    if (self->uart.Instance == USART1
        #if defined(USART6)
        || self->uart.Instance == USART6
        #endif
        ) {
        actual_baudrate = HAL_RCC_GetPCLK2Freq();
    } else {
        actual_baudrate = HAL_RCC_GetPCLK1Freq();
    }
    #endif
    actual_baudrate /= self->uart.Instance->BRR;

    // check we could set the baudrate within 5%
    uint32_t baudrate_diff;
    if (actual_baudrate > init->BaudRate) {
        baudrate_diff = actual_baudrate - init->BaudRate;
    } else {
        baudrate_diff = init->BaudRate - actual_baudrate;
    }
    init->BaudRate = actual_baudrate; // remember actual baudrate for printing
    if (20 * baudrate_diff > init->BaudRate) {
        nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "set baudrate %d is not within 5%% of desired value", actual_baudrate));
    }

    return mp_const_none;
}

/// \classmethod \constructor(bus, ...)
///
/// Construct a UART object on the given bus.  `bus` can be 1-6, or 'XA', 'XB', 'YA', or 'YB'.
/// With no additional parameters, the UART object is created but not
/// initialised (it has the settings from the last initialisation of
/// the bus, if any).  If extra arguments are given, the bus is initialised.
/// See `init` for parameters of initialisation.
///
/// The physical pins of the UART busses are:
///
///   - `UART(4)` is on `XA`: `(TX, RX) = (X1, X2) = (PA0, PA1)`
///   - `UART(1)` is on `XB`: `(TX, RX) = (X9, X10) = (PB6, PB7)`
///   - `UART(6)` is on `YA`: `(TX, RX) = (Y1, Y2) = (PC6, PC7)`
///   - `UART(3)` is on `YB`: `(TX, RX) = (Y9, Y10) = (PB10, PB11)`
///   - `UART(2)` is on: `(TX, RX) = (X3, X4) = (PA2, PA3)`
STATIC mp_obj_t pyb_uart_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
    // check arguments
    mp_arg_check_num(n_args, n_kw, 1, MP_OBJ_FUN_ARGS_MAX, true);

    // work out port
    int uart_id = 0;
    if (MP_OBJ_IS_STR(args[0])) {
        const char *port = mp_obj_str_get_str(args[0]);
        if (0) {
        #ifdef MICROPY_HW_UART1_NAME
        } else if (strcmp(port, MICROPY_HW_UART1_NAME) == 0) {
            uart_id = PYB_UART_1;
        #endif
        #ifdef MICROPY_HW_UART2_NAME
        } else if (strcmp(port, MICROPY_HW_UART2_NAME) == 0) {
            uart_id = PYB_UART_2;
        #endif
        #ifdef MICROPY_HW_UART3_NAME
        } else if (strcmp(port, MICROPY_HW_UART3_NAME) == 0) {
            uart_id = PYB_UART_3;
        #endif
        #ifdef MICROPY_HW_UART4_NAME
        } else if (strcmp(port, MICROPY_HW_UART4_NAME) == 0) {
            uart_id = PYB_UART_4;
        #endif
        #ifdef MICROPY_HW_UART5_NAME
        } else if (strcmp(port, MICROPY_HW_UART5_NAME) == 0) {
            uart_id = PYB_UART_5;
        #endif
        #ifdef MICROPY_HW_UART6_NAME
        } else if (strcmp(port, MICROPY_HW_UART6_NAME) == 0) {
            uart_id = PYB_UART_6;
        #endif
        } else {
            nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "UART(%s) doesn't exist", port));
        }
    } else {
        uart_id = mp_obj_get_int(args[0]);
        if (!uart_exists(uart_id)) {
            nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "UART(%d) doesn't exist", uart_id));
        }
    }

    pyb_uart_obj_t *self;
    if (MP_STATE_PORT(pyb_uart_obj_all)[uart_id - 1] == NULL) {
        // create new UART object
        self = m_new0(pyb_uart_obj_t, 1);
        self->base.type = &pyb_uart_type;
        self->uart_id = uart_id;
        MP_STATE_PORT(pyb_uart_obj_all)[uart_id - 1] = self;
    } else {
        // reference existing UART object
        self = MP_STATE_PORT(pyb_uart_obj_all)[uart_id - 1];
    }

    if (n_args > 1 || n_kw > 0) {
        // start the peripheral
        mp_map_t kw_args;
        mp_map_init_fixed_table(&kw_args, n_kw, args + n_args);
        pyb_uart_init_helper(self, n_args - 1, args + 1, &kw_args);
    }

    return self;
}

STATIC mp_obj_t pyb_uart_init(size_t n_args, const mp_obj_t *args, mp_map_t *kw_args) {
    return pyb_uart_init_helper(args[0], n_args - 1, args + 1, kw_args);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_uart_init_obj, 1, pyb_uart_init);

/// \method deinit()
/// Turn off the UART bus.
STATIC mp_obj_t pyb_uart_deinit(mp_obj_t self_in) {
    pyb_uart_obj_t *self = self_in;
    self->is_enabled = false;
    UART_HandleTypeDef *uart = &self->uart;
    HAL_UART_DeInit(uart);
    if (uart->Instance == USART1) {
        HAL_NVIC_DisableIRQ(USART1_IRQn);
        __HAL_RCC_USART1_FORCE_RESET();
        __HAL_RCC_USART1_RELEASE_RESET();
        __HAL_RCC_USART1_CLK_DISABLE();
    } else if (uart->Instance == USART2) {
        HAL_NVIC_DisableIRQ(USART2_IRQn);
        __HAL_RCC_USART2_FORCE_RESET();
        __HAL_RCC_USART2_RELEASE_RESET();
        __HAL_RCC_USART2_CLK_DISABLE();
    #if defined(USART3)
    } else if (uart->Instance == USART3) {
        #if !defined(STM32F0)
        HAL_NVIC_DisableIRQ(USART3_IRQn);
        #endif
        __HAL_RCC_USART3_FORCE_RESET();
        __HAL_RCC_USART3_RELEASE_RESET();
        __HAL_RCC_USART3_CLK_DISABLE();
    #endif
    #if defined(UART4)
    } else if (uart->Instance == UART4) {
        HAL_NVIC_DisableIRQ(UART4_IRQn);
        __HAL_RCC_UART4_FORCE_RESET();
        __HAL_RCC_UART4_RELEASE_RESET();
        __HAL_RCC_UART4_CLK_DISABLE();
    #endif
    #if defined(UART5)
    } else if (uart->Instance == UART5) {
        HAL_NVIC_DisableIRQ(UART5_IRQn);
        __HAL_RCC_UART5_FORCE_RESET();
        __HAL_RCC_UART5_RELEASE_RESET();
        __HAL_RCC_UART5_CLK_DISABLE();
    #endif
    #if defined(UART6)
    } else if (uart->Instance == USART6) {
        HAL_NVIC_DisableIRQ(USART6_IRQn);
        __HAL_RCC_USART6_FORCE_RESET();
        __HAL_RCC_USART6_RELEASE_RESET();
        __HAL_RCC_USART6_CLK_DISABLE();
    #endif
    #if defined(UART7)
    } else if (uart->Instance == UART7) {
        HAL_NVIC_DisableIRQ(UART7_IRQn);
        __HAL_RCC_UART7_FORCE_RESET();
        __HAL_RCC_UART7_RELEASE_RESET();
        __HAL_RCC_UART7_CLK_DISABLE();
    #endif
    #if defined(UART8)
    } else if (uart->Instance == UART8) {
        HAL_NVIC_DisableIRQ(UART8_IRQn);
        __HAL_RCC_UART8_FORCE_RESET();
        __HAL_RCC_UART8_RELEASE_RESET();
        __HAL_RCC_UART8_CLK_DISABLE();
    #endif
    }
    return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_uart_deinit_obj, pyb_uart_deinit);

/// \method any()
/// Return `True` if any characters waiting, else `False`.
STATIC mp_obj_t pyb_uart_any(mp_obj_t self_in) {
    pyb_uart_obj_t *self = self_in;
    return MP_OBJ_NEW_SMALL_INT(uart_rx_any(self));
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_uart_any_obj, pyb_uart_any);

/// \method writechar(char)
/// Write a single character on the bus.  `char` is an integer to write.
/// Return value: `None`.
STATIC mp_obj_t pyb_uart_writechar(mp_obj_t self_in, mp_obj_t char_in) {
    pyb_uart_obj_t *self = self_in;

    // get the character to write (might be 9 bits)
    uint16_t data = mp_obj_get_int(char_in);

    // write the character
    int errcode;
    if (uart_tx_wait(self, self->timeout)) {
        uart_tx_data(self, &data, 1, &errcode);
    } else {
        errcode = MP_ETIMEDOUT;
    }

    if (errcode != 0) {
        mp_raise_OSError(errcode);
    }

    return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_uart_writechar_obj, pyb_uart_writechar);

/// \method readchar()
/// Receive a single character on the bus.
/// Return value: The character read, as an integer.  Returns -1 on timeout.
STATIC mp_obj_t pyb_uart_readchar(mp_obj_t self_in) {
    pyb_uart_obj_t *self = self_in;
    if (uart_rx_wait(self, self->timeout)) {
        return MP_OBJ_NEW_SMALL_INT(uart_rx_char(self));
    } else {
        // return -1 on timeout
        return MP_OBJ_NEW_SMALL_INT(-1);
    }
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_uart_readchar_obj, pyb_uart_readchar);

// uart.sendbreak()
STATIC mp_obj_t pyb_uart_sendbreak(mp_obj_t self_in) {
    pyb_uart_obj_t *self = self_in;
    #if defined(STM32F0) || defined(STM32F7) || defined(STM32L4) || defined(STM32H7)
    self->uart.Instance->RQR = USART_RQR_SBKRQ; // write-only register
    #else
    self->uart.Instance->CR1 |= USART_CR1_SBK;
    #endif
    return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_uart_sendbreak_obj, pyb_uart_sendbreak);

STATIC const mp_rom_map_elem_t pyb_uart_locals_dict_table[] = {
    // instance methods

    { MP_ROM_QSTR(MP_QSTR_init), MP_ROM_PTR(&pyb_uart_init_obj) },
    { MP_ROM_QSTR(MP_QSTR_deinit), MP_ROM_PTR(&pyb_uart_deinit_obj) },
    { MP_ROM_QSTR(MP_QSTR_any), MP_ROM_PTR(&pyb_uart_any_obj) },

    /// \method read([nbytes])
    { MP_ROM_QSTR(MP_QSTR_read), MP_ROM_PTR(&mp_stream_read_obj) },
    /// \method readline()
    { MP_ROM_QSTR(MP_QSTR_readline), MP_ROM_PTR(&mp_stream_unbuffered_readline_obj)},
    /// \method readinto(buf[, nbytes])
    { MP_ROM_QSTR(MP_QSTR_readinto), MP_ROM_PTR(&mp_stream_readinto_obj) },
    /// \method write(buf)
    { MP_ROM_QSTR(MP_QSTR_write), MP_ROM_PTR(&mp_stream_write_obj) },

    { MP_ROM_QSTR(MP_QSTR_writechar), MP_ROM_PTR(&pyb_uart_writechar_obj) },
    { MP_ROM_QSTR(MP_QSTR_readchar), MP_ROM_PTR(&pyb_uart_readchar_obj) },
    { MP_ROM_QSTR(MP_QSTR_sendbreak), MP_ROM_PTR(&pyb_uart_sendbreak_obj) },

    // class constants
    { MP_ROM_QSTR(MP_QSTR_RTS), MP_ROM_INT(UART_HWCONTROL_RTS) },
    { MP_ROM_QSTR(MP_QSTR_CTS), MP_ROM_INT(UART_HWCONTROL_CTS) },
};

STATIC MP_DEFINE_CONST_DICT(pyb_uart_locals_dict, pyb_uart_locals_dict_table);

STATIC mp_uint_t pyb_uart_read(mp_obj_t self_in, void *buf_in, mp_uint_t size, int *errcode) {
    pyb_uart_obj_t *self = self_in;
    byte *buf = buf_in;

    // check that size is a multiple of character width
    if (size & self->char_width) {
        *errcode = MP_EIO;
        return MP_STREAM_ERROR;
    }

    // convert byte size to char size
    size >>= self->char_width;

    // make sure we want at least 1 char
    if (size == 0) {
        return 0;
    }

    // wait for first char to become available
    if (!uart_rx_wait(self, self->timeout)) {
        // return EAGAIN error to indicate non-blocking (then read() method returns None)
        *errcode = MP_EAGAIN;
        return MP_STREAM_ERROR;
    }

    // read the data
    byte *orig_buf = buf;
    for (;;) {
        int data = uart_rx_char(self);
        if (self->char_width == CHAR_WIDTH_9BIT) {
            *(uint16_t*)buf = data;
            buf += 2;
        } else {
            *buf++ = data;
        }
        if (--size == 0 || !uart_rx_wait(self, self->timeout_char)) {
            // return number of bytes read
            return buf - orig_buf;
        }
    }
}

STATIC mp_uint_t pyb_uart_write(mp_obj_t self_in, const void *buf_in, mp_uint_t size, int *errcode) {
    pyb_uart_obj_t *self = self_in;
    const byte *buf = buf_in;

    // check that size is a multiple of character width
    if (size & self->char_width) {
        *errcode = MP_EIO;
        return MP_STREAM_ERROR;
    }

    // wait to be able to write the first character. EAGAIN causes write to return None
    if (!uart_tx_wait(self, self->timeout)) {
        *errcode = MP_EAGAIN;
        return MP_STREAM_ERROR;
    }

    // write the data
    size_t num_tx = uart_tx_data(self, buf, size >> self->char_width, errcode);

    if (*errcode == 0 || *errcode == MP_ETIMEDOUT) {
        // return number of bytes written, even if there was a timeout
        return num_tx << self->char_width;
    } else {
        return MP_STREAM_ERROR;
    }
}

STATIC mp_uint_t pyb_uart_ioctl(mp_obj_t self_in, mp_uint_t request, mp_uint_t arg, int *errcode) {
    pyb_uart_obj_t *self = self_in;
    mp_uint_t ret;
    if (request == MP_STREAM_POLL) {
        mp_uint_t flags = arg;
        ret = 0;
        if ((flags & MP_STREAM_POLL_RD) && uart_rx_any(self)) {
            ret |= MP_STREAM_POLL_RD;
        }
        if ((flags & MP_STREAM_POLL_WR) && __HAL_UART_GET_FLAG(&self->uart, UART_FLAG_TXE)) {
            ret |= MP_STREAM_POLL_WR;
        }
    } else {
        *errcode = MP_EINVAL;
        ret = MP_STREAM_ERROR;
    }
    return ret;
}

STATIC const mp_stream_p_t uart_stream_p = {
    .read = pyb_uart_read,
    .write = pyb_uart_write,
    .ioctl = pyb_uart_ioctl,
    .is_text = false,
};

const mp_obj_type_t pyb_uart_type = {
    { &mp_type_type },
    .name = MP_QSTR_UART,
    .print = pyb_uart_print,
    .make_new = pyb_uart_make_new,
    .getiter = mp_identity_getiter,
    .iternext = mp_stream_unbuffered_iter,
    .protocol = &uart_stream_p,
    .locals_dict = (mp_obj_dict_t*)&pyb_uart_locals_dict,
};