CircuitPython

Source code browser

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
/*
 * This file is part of the MicroPython project, http://micropython.org/
 *
 * The MIT License (MIT)
 *
 * Copyright (c) 2013, 2014 Damien P. George
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include <assert.h>

#include "py/mpstate.h"
#include "py/emit.h"
#include "py/bc0.h"

#if MICROPY_ENABLE_COMPILER

#define BYTES_FOR_INT ((BYTES_PER_WORD * 8 + 6) / 7)
#define DUMMY_DATA_SIZE (BYTES_FOR_INT)

struct _emit_t {
    // Accessed as mp_obj_t, so must be aligned as such, and we rely on the
    // memory allocator returning a suitably aligned pointer.
    // Should work for cases when mp_obj_t is 64-bit on a 32-bit machine.
    byte dummy_data[DUMMY_DATA_SIZE];

    pass_kind_t pass : 8;
    mp_uint_t last_emit_was_return_value : 8;

    int stack_size;

    scope_t *scope;

    mp_uint_t last_source_line_offset;
    mp_uint_t last_source_line;

    mp_uint_t max_num_labels;
    mp_uint_t *label_offsets;

    size_t code_info_offset;
    size_t code_info_size;
    size_t bytecode_offset;
    size_t bytecode_size;
    byte *code_base; // stores both byte code and code info

    #if MICROPY_PERSISTENT_CODE
    uint16_t ct_cur_obj;
    uint16_t ct_num_obj;
    uint16_t ct_cur_raw_code;
    #endif
    mp_uint_t *const_table;
};

emit_t *emit_bc_new(void) {
    emit_t *emit = m_new0(emit_t, 1);
    return emit;
}

void emit_bc_set_max_num_labels(emit_t *emit, mp_uint_t max_num_labels) {
    emit->max_num_labels = max_num_labels;
    emit->label_offsets = m_new(mp_uint_t, emit->max_num_labels);
}

void emit_bc_free(emit_t *emit) {
    m_del(mp_uint_t, emit->label_offsets, emit->max_num_labels);
    m_del_obj(emit_t, emit);
}

typedef byte *(*emit_allocator_t)(emit_t *emit, int nbytes);

STATIC void emit_write_uint(emit_t *emit, emit_allocator_t allocator, mp_uint_t val) {
    // We store each 7 bits in a separate byte, and that's how many bytes needed
    byte buf[BYTES_FOR_INT];
    byte *p = buf + sizeof(buf);
    // We encode in little-ending order, but store in big-endian, to help decoding
    do {
        *--p = val & 0x7f;
        val >>= 7;
    } while (val != 0);
    byte *c = allocator(emit, buf + sizeof(buf) - p);
    while (p != buf + sizeof(buf) - 1) {
        *c++ = *p++ | 0x80;
    }
    *c = *p;
}

// all functions must go through this one to emit code info
STATIC byte *emit_get_cur_to_write_code_info(emit_t *emit, int num_bytes_to_write) {
    //printf("emit %d\n", num_bytes_to_write);
    if (emit->pass < MP_PASS_EMIT) {
        emit->code_info_offset += num_bytes_to_write;
        return emit->dummy_data;
    } else {
        assert(emit->code_info_offset + num_bytes_to_write <= emit->code_info_size);
        byte *c = emit->code_base + emit->code_info_offset;
        emit->code_info_offset += num_bytes_to_write;
        return c;
    }
}

STATIC void emit_write_code_info_byte(emit_t* emit, byte val) {
    *emit_get_cur_to_write_code_info(emit, 1) = val;
}

STATIC void emit_write_code_info_uint(emit_t* emit, mp_uint_t val) {
    emit_write_uint(emit, emit_get_cur_to_write_code_info, val);
}

STATIC void emit_write_code_info_qstr(emit_t *emit, qstr qst) {
    #if MICROPY_PERSISTENT_CODE
    assert((qst >> 16) == 0);
    byte *c = emit_get_cur_to_write_code_info(emit, 2);
    c[0] = qst;
    c[1] = qst >> 8;
    #else
    emit_write_uint(emit, emit_get_cur_to_write_code_info, qst);
    #endif
}

#if MICROPY_ENABLE_SOURCE_LINE
STATIC void emit_write_code_info_bytes_lines(emit_t *emit, mp_uint_t bytes_to_skip, mp_uint_t lines_to_skip) {
    assert(bytes_to_skip > 0 || lines_to_skip > 0);
    //printf("  %d %d\n", bytes_to_skip, lines_to_skip);
    while (bytes_to_skip > 0 || lines_to_skip > 0) {
        mp_uint_t b, l;
        if (lines_to_skip <= 6 || bytes_to_skip > 0xf) {
            // use 0b0LLBBBBB encoding
            b = MIN(bytes_to_skip, 0x1f);
            if (b < bytes_to_skip) {
                // we can't skip any lines until we skip all the bytes
                l = 0;
            } else {
                l = MIN(lines_to_skip, 0x3);
            }
            *emit_get_cur_to_write_code_info(emit, 1) = b | (l << 5);
        } else {
            // use 0b1LLLBBBB 0bLLLLLLLL encoding (l's LSB in second byte)
            b = MIN(bytes_to_skip, 0xf);
            l = MIN(lines_to_skip, 0x7ff);
            byte *ci = emit_get_cur_to_write_code_info(emit, 2);
            ci[0] = 0x80 | b | ((l >> 4) & 0x70);
            ci[1] = l;
        }
        bytes_to_skip -= b;
        lines_to_skip -= l;
    }
}
#endif

// all functions must go through this one to emit byte code
STATIC byte *emit_get_cur_to_write_bytecode(emit_t *emit, int num_bytes_to_write) {
    //printf("emit %d\n", num_bytes_to_write);
    if (emit->pass < MP_PASS_EMIT) {
        emit->bytecode_offset += num_bytes_to_write;
        return emit->dummy_data;
    } else {
        assert(emit->bytecode_offset + num_bytes_to_write <= emit->bytecode_size);
        byte *c = emit->code_base + emit->code_info_size + emit->bytecode_offset;
        emit->bytecode_offset += num_bytes_to_write;
        return c;
    }
}

STATIC void emit_write_bytecode_byte(emit_t *emit, byte b1) {
    byte *c = emit_get_cur_to_write_bytecode(emit, 1);
    c[0] = b1;
}

STATIC void emit_write_bytecode_byte_byte(emit_t* emit, byte b1, byte b2) {
    byte *c = emit_get_cur_to_write_bytecode(emit, 2);
    c[0] = b1;
    c[1] = b2;
}

// Similar to emit_write_bytecode_uint(), just some extra handling to encode sign
STATIC void emit_write_bytecode_byte_int(emit_t *emit, byte b1, mp_int_t num) {
    emit_write_bytecode_byte(emit, b1);

    // We store each 7 bits in a separate byte, and that's how many bytes needed
    byte buf[BYTES_FOR_INT];
    byte *p = buf + sizeof(buf);
    // We encode in little-ending order, but store in big-endian, to help decoding
    do {
        *--p = num & 0x7f;
        num >>= 7;
    } while (num != 0 && num != -1);
    // Make sure that highest bit we stored (mask 0x40) matches sign
    // of the number. If not, store extra byte just to encode sign
    if (num == -1 && (*p & 0x40) == 0) {
        *--p = 0x7f;
    } else if (num == 0 && (*p & 0x40) != 0) {
        *--p = 0;
    }

    byte *c = emit_get_cur_to_write_bytecode(emit, buf + sizeof(buf) - p);
    while (p != buf + sizeof(buf) - 1) {
        *c++ = *p++ | 0x80;
    }
    *c = *p;
}

STATIC void emit_write_bytecode_byte_uint(emit_t *emit, byte b, mp_uint_t val) {
    emit_write_bytecode_byte(emit, b);
    emit_write_uint(emit, emit_get_cur_to_write_bytecode, val);
}

#if MICROPY_PERSISTENT_CODE
STATIC void emit_write_bytecode_byte_const(emit_t *emit, byte b, mp_uint_t n, mp_uint_t c) {
    if (emit->pass == MP_PASS_EMIT) {
        emit->const_table[n] = c;
    }
    emit_write_bytecode_byte_uint(emit, b, n);
}
#endif

STATIC void emit_write_bytecode_byte_qstr(emit_t* emit, byte b, qstr qst) {
    #if MICROPY_PERSISTENT_CODE
    assert((qst >> 16) == 0);
    byte *c = emit_get_cur_to_write_bytecode(emit, 3);
    c[0] = b;
    c[1] = qst;
    c[2] = qst >> 8;
    #else
    emit_write_bytecode_byte_uint(emit, b, qst);
    #endif
}

STATIC void emit_write_bytecode_byte_obj(emit_t *emit, byte b, mp_obj_t obj) {
    #if MICROPY_PERSISTENT_CODE
    emit_write_bytecode_byte_const(emit, b,
        emit->scope->num_pos_args + emit->scope->num_kwonly_args
        + emit->ct_cur_obj++, (mp_uint_t)obj);
    #else
    // aligns the pointer so it is friendly to GC
    emit_write_bytecode_byte(emit, b);
    emit->bytecode_offset = (size_t)MP_ALIGN(emit->bytecode_offset, sizeof(mp_obj_t));
    mp_obj_t *c = (mp_obj_t*)emit_get_cur_to_write_bytecode(emit, sizeof(mp_obj_t));
    // Verify thar c is already uint-aligned
    assert(c == MP_ALIGN(c, sizeof(mp_obj_t)));
    *c = obj;
    #endif
}

STATIC void emit_write_bytecode_byte_raw_code(emit_t *emit, byte b, mp_raw_code_t *rc) {
    #if MICROPY_PERSISTENT_CODE
    emit_write_bytecode_byte_const(emit, b,
        emit->scope->num_pos_args + emit->scope->num_kwonly_args
        + emit->ct_num_obj + emit->ct_cur_raw_code++, (mp_uint_t)(uintptr_t)rc);
    #else
    // aligns the pointer so it is friendly to GC
    emit_write_bytecode_byte(emit, b);
    emit->bytecode_offset = (size_t)MP_ALIGN(emit->bytecode_offset, sizeof(void*));
    void **c = (void**)emit_get_cur_to_write_bytecode(emit, sizeof(void*));
    // Verify thar c is already uint-aligned
    assert(c == MP_ALIGN(c, sizeof(void*)));
    *c = rc;
    #endif
}

// unsigned labels are relative to ip following this instruction, stored as 16 bits
STATIC void emit_write_bytecode_byte_unsigned_label(emit_t *emit, byte b1, mp_uint_t label) {
    mp_uint_t bytecode_offset;
    if (emit->pass < MP_PASS_EMIT) {
        bytecode_offset = 0;
    } else {
        bytecode_offset = emit->label_offsets[label] - emit->bytecode_offset - 3;
    }
    byte *c = emit_get_cur_to_write_bytecode(emit, 3);
    c[0] = b1;
    c[1] = bytecode_offset;
    c[2] = bytecode_offset >> 8;
}

// signed labels are relative to ip following this instruction, stored as 16 bits, in excess
STATIC void emit_write_bytecode_byte_signed_label(emit_t *emit, byte b1, mp_uint_t label) {
    int bytecode_offset;
    if (emit->pass < MP_PASS_EMIT) {
        bytecode_offset = 0;
    } else {
        bytecode_offset = emit->label_offsets[label] - emit->bytecode_offset - 3 + 0x8000;
    }
    byte *c = emit_get_cur_to_write_bytecode(emit, 3);
    c[0] = b1;
    c[1] = bytecode_offset;
    c[2] = bytecode_offset >> 8;
}

void mp_emit_bc_start_pass(emit_t *emit, pass_kind_t pass, scope_t *scope) {
    emit->pass = pass;
    emit->stack_size = 0;
    emit->last_emit_was_return_value = false;
    emit->scope = scope;
    emit->last_source_line_offset = 0;
    emit->last_source_line = 1;
    #ifndef NDEBUG
    // With debugging enabled labels are checked for unique assignment
    if (pass < MP_PASS_EMIT && emit->label_offsets != NULL) {
        memset(emit->label_offsets, -1, emit->max_num_labels * sizeof(mp_uint_t));
    }
    #endif
    emit->bytecode_offset = 0;
    emit->code_info_offset = 0;

    // Write local state size and exception stack size.
    {
        mp_uint_t n_state = scope->num_locals + scope->stack_size;
        if (n_state == 0) {
            // Need at least 1 entry in the state, in the case an exception is
            // propagated through this function, the exception is returned in
            // the highest slot in the state (fastn[0], see vm.c).
            n_state = 1;
        }
        emit_write_code_info_uint(emit, n_state);
        emit_write_code_info_uint(emit, scope->exc_stack_size);
    }

    // Write scope flags and number of arguments.
    // TODO check that num args all fit in a byte
    emit_write_code_info_byte(emit, emit->scope->scope_flags);
    emit_write_code_info_byte(emit, emit->scope->num_pos_args);
    emit_write_code_info_byte(emit, emit->scope->num_kwonly_args);
    emit_write_code_info_byte(emit, emit->scope->num_def_pos_args);

    // Write size of the rest of the code info.  We don't know how big this
    // variable uint will be on the MP_PASS_CODE_SIZE pass so we reserve 2 bytes
    // for it and hope that is enough!  TODO assert this or something.
    if (pass == MP_PASS_EMIT) {
        emit_write_code_info_uint(emit, emit->code_info_size - emit->code_info_offset);
    } else  {
        emit_get_cur_to_write_code_info(emit, 2);
    }

    // Write the name and source file of this function.
    emit_write_code_info_qstr(emit, scope->simple_name);
    emit_write_code_info_qstr(emit, scope->source_file);

    // bytecode prelude: initialise closed over variables
    for (int i = 0; i < scope->id_info_len; i++) {
        id_info_t *id = &scope->id_info[i];
        if (id->kind == ID_INFO_KIND_CELL) {
            assert(id->local_num < 255);
            emit_write_bytecode_byte(emit, id->local_num); // write the local which should be converted to a cell
        }
    }
    emit_write_bytecode_byte(emit, 255); // end of list sentinel

    #if MICROPY_PERSISTENT_CODE
    emit->ct_cur_obj = 0;
    emit->ct_cur_raw_code = 0;
    #endif

    if (pass == MP_PASS_EMIT) {
        // Write argument names (needed to resolve positional args passed as
        // keywords).  We store them as full word-sized objects for efficient access
        // in mp_setup_code_state this is the start of the prelude and is guaranteed
        // to be aligned on a word boundary.

        // For a given argument position (indexed by i) we need to find the
        // corresponding id_info which is a parameter, as it has the correct
        // qstr name to use as the argument name.  Note that it's not a simple
        // 1-1 mapping (ie i!=j in general) because of possible closed-over
        // variables.  In the case that the argument i has no corresponding
        // parameter we use "*" as its name (since no argument can ever be named
        // "*").  We could use a blank qstr but "*" is better for debugging.
        // Note: there is some wasted RAM here for the case of storing a qstr
        // for each closed-over variable, and maybe there is a better way to do
        // it, but that would require changes to mp_setup_code_state.
        for (int i = 0; i < scope->num_pos_args + scope->num_kwonly_args; i++) {
            qstr qst = MP_QSTR__star_;
            for (int j = 0; j < scope->id_info_len; ++j) {
                id_info_t *id = &scope->id_info[j];
                if ((id->flags & ID_FLAG_IS_PARAM) && id->local_num == i) {
                    qst = id->qst;
                    break;
                }
            }
            emit->const_table[i] = (mp_uint_t)MP_OBJ_NEW_QSTR(qst);
        }
    }
}

void mp_emit_bc_end_pass(emit_t *emit) {
    if (emit->pass == MP_PASS_SCOPE) {
        return;
    }

    // check stack is back to zero size
    assert(emit->stack_size == 0);

    emit_write_code_info_byte(emit, 0); // end of line number info

    #if MICROPY_PERSISTENT_CODE
    assert(emit->pass <= MP_PASS_STACK_SIZE || (emit->ct_num_obj == emit->ct_cur_obj));
    emit->ct_num_obj = emit->ct_cur_obj;
    #endif

    if (emit->pass == MP_PASS_CODE_SIZE) {
        #if !MICROPY_PERSISTENT_CODE
        // so bytecode is aligned
        emit->code_info_offset = (size_t)MP_ALIGN(emit->code_info_offset, sizeof(mp_uint_t));
        #endif

        // calculate size of total code-info + bytecode, in bytes
        emit->code_info_size = emit->code_info_offset;
        emit->bytecode_size = emit->bytecode_offset;
        emit->code_base = m_new0(byte, emit->code_info_size + emit->bytecode_size);

        #if MICROPY_PERSISTENT_CODE
        emit->const_table = m_new0(mp_uint_t,
            emit->scope->num_pos_args + emit->scope->num_kwonly_args
            + emit->ct_cur_obj + emit->ct_cur_raw_code);
        #else
        emit->const_table = m_new0(mp_uint_t,
            emit->scope->num_pos_args + emit->scope->num_kwonly_args);
        #endif

    } else if (emit->pass == MP_PASS_EMIT) {
        mp_emit_glue_assign_bytecode(emit->scope->raw_code, emit->code_base,
            #if MICROPY_PERSISTENT_CODE_SAVE || MICROPY_DEBUG_PRINTERS
            emit->code_info_size + emit->bytecode_size,
            #endif
            emit->const_table,
            #if MICROPY_PERSISTENT_CODE_SAVE
            emit->ct_cur_obj, emit->ct_cur_raw_code,
            #endif
            emit->scope->scope_flags);
    }
}

bool mp_emit_bc_last_emit_was_return_value(emit_t *emit) {
    return emit->last_emit_was_return_value;
}

void mp_emit_bc_adjust_stack_size(emit_t *emit, mp_int_t delta) {
    if (emit->pass == MP_PASS_SCOPE) {
        return;
    }
    assert((mp_int_t)emit->stack_size + delta >= 0);
    emit->stack_size += delta;
    if (emit->stack_size > emit->scope->stack_size) {
        emit->scope->stack_size = emit->stack_size;
    }
    emit->last_emit_was_return_value = false;
}

static inline void emit_bc_pre(emit_t *emit, mp_int_t stack_size_delta) {
    mp_emit_bc_adjust_stack_size(emit, stack_size_delta);
}

void mp_emit_bc_set_source_line(emit_t *emit, mp_uint_t source_line) {
    //printf("source: line %d -> %d  offset %d -> %d\n", emit->last_source_line, source_line, emit->last_source_line_offset, emit->bytecode_offset);
#if MICROPY_ENABLE_SOURCE_LINE
    if (MP_STATE_VM(mp_optimise_value) >= 3) {
        // If we compile with -O3, don't store line numbers.
        return;
    }
    if (source_line > emit->last_source_line) {
        mp_uint_t bytes_to_skip = emit->bytecode_offset - emit->last_source_line_offset;
        mp_uint_t lines_to_skip = source_line - emit->last_source_line;
        emit_write_code_info_bytes_lines(emit, bytes_to_skip, lines_to_skip);
        emit->last_source_line_offset = emit->bytecode_offset;
        emit->last_source_line = source_line;
    }
#else
    (void)emit;
    (void)source_line;
#endif
}

void mp_emit_bc_label_assign(emit_t *emit, mp_uint_t l) {
    emit_bc_pre(emit, 0);
    if (emit->pass == MP_PASS_SCOPE) {
        return;
    }
    assert(l < emit->max_num_labels);
    if (emit->pass < MP_PASS_EMIT) {
        // assign label offset
        assert(emit->label_offsets[l] == (mp_uint_t)-1);
        emit->label_offsets[l] = emit->bytecode_offset;
    } else {
        // ensure label offset has not changed from MP_PASS_CODE_SIZE to MP_PASS_EMIT
        assert(emit->label_offsets[l] == emit->bytecode_offset);
    }
}

void mp_emit_bc_import(emit_t *emit, qstr qst, int kind) {
    MP_STATIC_ASSERT(MP_BC_IMPORT_NAME + MP_EMIT_IMPORT_NAME == MP_BC_IMPORT_NAME);
    MP_STATIC_ASSERT(MP_BC_IMPORT_NAME + MP_EMIT_IMPORT_FROM == MP_BC_IMPORT_FROM);
    if (kind == MP_EMIT_IMPORT_FROM) {
        emit_bc_pre(emit, 1);
    } else {
        emit_bc_pre(emit, -1);
    }
    if (kind == MP_EMIT_IMPORT_STAR) {
        emit_write_bytecode_byte(emit, MP_BC_IMPORT_STAR);
    } else {
        emit_write_bytecode_byte_qstr(emit, MP_BC_IMPORT_NAME + kind, qst);
    }
}

void mp_emit_bc_load_const_tok(emit_t *emit, mp_token_kind_t tok) {
    emit_bc_pre(emit, 1);
    switch (tok) {
        case MP_TOKEN_KW_FALSE: emit_write_bytecode_byte(emit, MP_BC_LOAD_CONST_FALSE); break;
        case MP_TOKEN_KW_NONE: emit_write_bytecode_byte(emit, MP_BC_LOAD_CONST_NONE); break;
        case MP_TOKEN_KW_TRUE: emit_write_bytecode_byte(emit, MP_BC_LOAD_CONST_TRUE); break;
        default:
            assert(tok == MP_TOKEN_ELLIPSIS);
            emit_write_bytecode_byte_obj(emit, MP_BC_LOAD_CONST_OBJ, MP_OBJ_FROM_PTR(&mp_const_ellipsis_obj));
            break;
    }
}

void mp_emit_bc_load_const_small_int(emit_t *emit, mp_int_t arg) {
    emit_bc_pre(emit, 1);
    if (-16 <= arg && arg <= 47) {
        emit_write_bytecode_byte(emit, MP_BC_LOAD_CONST_SMALL_INT_MULTI + 16 + arg);
    } else {
        emit_write_bytecode_byte_int(emit, MP_BC_LOAD_CONST_SMALL_INT, arg);
    }
}

void mp_emit_bc_load_const_str(emit_t *emit, qstr qst) {
    emit_bc_pre(emit, 1);
    emit_write_bytecode_byte_qstr(emit, MP_BC_LOAD_CONST_STRING, qst);
}

void mp_emit_bc_load_const_obj(emit_t *emit, mp_obj_t obj) {
    emit_bc_pre(emit, 1);
    emit_write_bytecode_byte_obj(emit, MP_BC_LOAD_CONST_OBJ, obj);
}

void mp_emit_bc_load_null(emit_t *emit) {
    emit_bc_pre(emit, 1);
    emit_write_bytecode_byte(emit, MP_BC_LOAD_NULL);
}

void mp_emit_bc_load_local(emit_t *emit, qstr qst, mp_uint_t local_num, int kind) {
    MP_STATIC_ASSERT(MP_BC_LOAD_FAST_N + MP_EMIT_IDOP_LOCAL_FAST == MP_BC_LOAD_FAST_N);
    MP_STATIC_ASSERT(MP_BC_LOAD_FAST_N + MP_EMIT_IDOP_LOCAL_DEREF == MP_BC_LOAD_DEREF);
    (void)qst;
    emit_bc_pre(emit, 1);
    if (kind == MP_EMIT_IDOP_LOCAL_FAST && local_num <= 15) {
        emit_write_bytecode_byte(emit, MP_BC_LOAD_FAST_MULTI + local_num);
    } else {
        emit_write_bytecode_byte_uint(emit, MP_BC_LOAD_FAST_N + kind, local_num);
    }
}

void mp_emit_bc_load_global(emit_t *emit, qstr qst, int kind) {
    MP_STATIC_ASSERT(MP_BC_LOAD_NAME + MP_EMIT_IDOP_GLOBAL_NAME == MP_BC_LOAD_NAME);
    MP_STATIC_ASSERT(MP_BC_LOAD_NAME + MP_EMIT_IDOP_GLOBAL_GLOBAL == MP_BC_LOAD_GLOBAL);
    (void)qst;
    emit_bc_pre(emit, 1);
    emit_write_bytecode_byte_qstr(emit, MP_BC_LOAD_NAME + kind, qst);
    if (MICROPY_OPT_CACHE_MAP_LOOKUP_IN_BYTECODE_DYNAMIC) {
        emit_write_bytecode_byte(emit, 0);
    }
}

void mp_emit_bc_load_method(emit_t *emit, qstr qst, bool is_super) {
    emit_bc_pre(emit, 1 - 2 * is_super);
    emit_write_bytecode_byte_qstr(emit, is_super ? MP_BC_LOAD_SUPER_METHOD : MP_BC_LOAD_METHOD, qst);
}

void mp_emit_bc_load_build_class(emit_t *emit) {
    emit_bc_pre(emit, 1);
    emit_write_bytecode_byte(emit, MP_BC_LOAD_BUILD_CLASS);
}

void mp_emit_bc_subscr(emit_t *emit, int kind) {
    if (kind == MP_EMIT_SUBSCR_LOAD) {
        emit_bc_pre(emit, -1);
        emit_write_bytecode_byte(emit, MP_BC_LOAD_SUBSCR);
    } else {
        if (kind == MP_EMIT_SUBSCR_DELETE) {
            mp_emit_bc_load_null(emit);
            mp_emit_bc_rot_three(emit);
        }
        emit_bc_pre(emit, -3);
        emit_write_bytecode_byte(emit, MP_BC_STORE_SUBSCR);
    }
}

void mp_emit_bc_attr(emit_t *emit, qstr qst, int kind) {
    if (kind == MP_EMIT_ATTR_LOAD) {
        emit_bc_pre(emit, 0);
        emit_write_bytecode_byte_qstr(emit, MP_BC_LOAD_ATTR, qst);
    } else {
        if (kind == MP_EMIT_ATTR_DELETE) {
            mp_emit_bc_load_null(emit);
            mp_emit_bc_rot_two(emit);
        }
        emit_bc_pre(emit, -2);
        emit_write_bytecode_byte_qstr(emit, MP_BC_STORE_ATTR, qst);
    }
    if (MICROPY_OPT_CACHE_MAP_LOOKUP_IN_BYTECODE_DYNAMIC) {
        emit_write_bytecode_byte(emit, 0);
    }
}

void mp_emit_bc_store_local(emit_t *emit, qstr qst, mp_uint_t local_num, int kind) {
    MP_STATIC_ASSERT(MP_BC_STORE_FAST_N + MP_EMIT_IDOP_LOCAL_FAST == MP_BC_STORE_FAST_N);
    MP_STATIC_ASSERT(MP_BC_STORE_FAST_N + MP_EMIT_IDOP_LOCAL_DEREF == MP_BC_STORE_DEREF);
    (void)qst;
    emit_bc_pre(emit, -1);
    if (kind == MP_EMIT_IDOP_LOCAL_FAST && local_num <= 15) {
        emit_write_bytecode_byte(emit, MP_BC_STORE_FAST_MULTI + local_num);
    } else {
        emit_write_bytecode_byte_uint(emit, MP_BC_STORE_FAST_N + kind, local_num);
    }
}

void mp_emit_bc_store_global(emit_t *emit, qstr qst, int kind) {
    MP_STATIC_ASSERT(MP_BC_STORE_NAME + MP_EMIT_IDOP_GLOBAL_NAME == MP_BC_STORE_NAME);
    MP_STATIC_ASSERT(MP_BC_STORE_NAME + MP_EMIT_IDOP_GLOBAL_GLOBAL == MP_BC_STORE_GLOBAL);
    emit_bc_pre(emit, -1);
    emit_write_bytecode_byte_qstr(emit, MP_BC_STORE_NAME + kind, qst);
}

void mp_emit_bc_delete_local(emit_t *emit, qstr qst, mp_uint_t local_num, int kind) {
    MP_STATIC_ASSERT(MP_BC_DELETE_FAST + MP_EMIT_IDOP_LOCAL_FAST == MP_BC_DELETE_FAST);
    MP_STATIC_ASSERT(MP_BC_DELETE_FAST + MP_EMIT_IDOP_LOCAL_DEREF == MP_BC_DELETE_DEREF);
    (void)qst;
    emit_write_bytecode_byte_uint(emit, MP_BC_DELETE_FAST + kind, local_num);
}

void mp_emit_bc_delete_global(emit_t *emit, qstr qst, int kind) {
    MP_STATIC_ASSERT(MP_BC_DELETE_NAME + MP_EMIT_IDOP_GLOBAL_NAME == MP_BC_DELETE_NAME);
    MP_STATIC_ASSERT(MP_BC_DELETE_NAME + MP_EMIT_IDOP_GLOBAL_GLOBAL == MP_BC_DELETE_GLOBAL);
    emit_bc_pre(emit, 0);
    emit_write_bytecode_byte_qstr(emit, MP_BC_DELETE_NAME + kind, qst);
}

void mp_emit_bc_dup_top(emit_t *emit) {
    emit_bc_pre(emit, 1);
    emit_write_bytecode_byte(emit, MP_BC_DUP_TOP);
}

void mp_emit_bc_dup_top_two(emit_t *emit) {
    emit_bc_pre(emit, 2);
    emit_write_bytecode_byte(emit, MP_BC_DUP_TOP_TWO);
}

void mp_emit_bc_pop_top(emit_t *emit) {
    emit_bc_pre(emit, -1);
    emit_write_bytecode_byte(emit, MP_BC_POP_TOP);
}

void mp_emit_bc_rot_two(emit_t *emit) {
    emit_bc_pre(emit, 0);
    emit_write_bytecode_byte(emit, MP_BC_ROT_TWO);
}

void mp_emit_bc_rot_three(emit_t *emit) {
    emit_bc_pre(emit, 0);
    emit_write_bytecode_byte(emit, MP_BC_ROT_THREE);
}

void mp_emit_bc_jump(emit_t *emit, mp_uint_t label) {
    emit_bc_pre(emit, 0);
    emit_write_bytecode_byte_signed_label(emit, MP_BC_JUMP, label);
}

void mp_emit_bc_pop_jump_if(emit_t *emit, bool cond, mp_uint_t label) {
    emit_bc_pre(emit, -1);
    if (cond) {
        emit_write_bytecode_byte_signed_label(emit, MP_BC_POP_JUMP_IF_TRUE, label);
    } else {
        emit_write_bytecode_byte_signed_label(emit, MP_BC_POP_JUMP_IF_FALSE, label);
    }
}

void mp_emit_bc_jump_if_or_pop(emit_t *emit, bool cond, mp_uint_t label) {
    emit_bc_pre(emit, -1);
    if (cond) {
        emit_write_bytecode_byte_signed_label(emit, MP_BC_JUMP_IF_TRUE_OR_POP, label);
    } else {
        emit_write_bytecode_byte_signed_label(emit, MP_BC_JUMP_IF_FALSE_OR_POP, label);
    }
}

void mp_emit_bc_unwind_jump(emit_t *emit, mp_uint_t label, mp_uint_t except_depth) {
    if (except_depth == 0) {
        emit_bc_pre(emit, 0);
        if (label & MP_EMIT_BREAK_FROM_FOR) {
            // need to pop the iterator if we are breaking out of a for loop
            emit_write_bytecode_byte(emit, MP_BC_POP_TOP);
            // also pop the iter_buf
            for (size_t i = 0; i < MP_OBJ_ITER_BUF_NSLOTS - 1; ++i) {
                emit_write_bytecode_byte(emit, MP_BC_POP_TOP);
            }
        }
        emit_write_bytecode_byte_signed_label(emit, MP_BC_JUMP, label & ~MP_EMIT_BREAK_FROM_FOR);
    } else {
        emit_write_bytecode_byte_signed_label(emit, MP_BC_UNWIND_JUMP, label & ~MP_EMIT_BREAK_FROM_FOR);
        emit_write_bytecode_byte(emit, ((label & MP_EMIT_BREAK_FROM_FOR) ? 0x80 : 0) | except_depth);
    }
}

void mp_emit_bc_setup_block(emit_t *emit, mp_uint_t label, int kind) {
    MP_STATIC_ASSERT(MP_BC_SETUP_WITH + MP_EMIT_SETUP_BLOCK_WITH == MP_BC_SETUP_WITH);
    MP_STATIC_ASSERT(MP_BC_SETUP_WITH + MP_EMIT_SETUP_BLOCK_EXCEPT == MP_BC_SETUP_EXCEPT);
    MP_STATIC_ASSERT(MP_BC_SETUP_WITH + MP_EMIT_SETUP_BLOCK_FINALLY == MP_BC_SETUP_FINALLY);
    if (kind == MP_EMIT_SETUP_BLOCK_WITH) {
    // The SETUP_WITH opcode pops ctx_mgr from the top of the stack
    // and then pushes 3 entries: __exit__, ctx_mgr, as_value.
        emit_bc_pre(emit, 2);
    } else {
        emit_bc_pre(emit, 0);
    }
    emit_write_bytecode_byte_unsigned_label(emit, MP_BC_SETUP_WITH + kind, label);
}

void mp_emit_bc_with_cleanup(emit_t *emit, mp_uint_t label) {
    mp_emit_bc_pop_block(emit);
    mp_emit_bc_load_const_tok(emit, MP_TOKEN_KW_NONE);
    mp_emit_bc_label_assign(emit, label);
    emit_bc_pre(emit, 2); // ensure we have enough stack space to call the __exit__ method
    emit_write_bytecode_byte(emit, MP_BC_WITH_CLEANUP);
    emit_bc_pre(emit, -4); // cancel the 2 above, plus the 2 from mp_emit_bc_setup_block(MP_EMIT_SETUP_BLOCK_WITH)
}

void mp_emit_bc_end_finally(emit_t *emit) {
    emit_bc_pre(emit, -1);
    emit_write_bytecode_byte(emit, MP_BC_END_FINALLY);
}

void mp_emit_bc_get_iter(emit_t *emit, bool use_stack) {
    emit_bc_pre(emit, use_stack ? MP_OBJ_ITER_BUF_NSLOTS - 1 : 0);
    emit_write_bytecode_byte(emit, use_stack ? MP_BC_GET_ITER_STACK : MP_BC_GET_ITER);
}

void mp_emit_bc_for_iter(emit_t *emit, mp_uint_t label) {
    emit_bc_pre(emit, 1);
    emit_write_bytecode_byte_unsigned_label(emit, MP_BC_FOR_ITER, label);
}

void mp_emit_bc_for_iter_end(emit_t *emit) {
    emit_bc_pre(emit, -MP_OBJ_ITER_BUF_NSLOTS);
}

void mp_emit_bc_pop_block(emit_t *emit) {
    emit_bc_pre(emit, 0);
    emit_write_bytecode_byte(emit, MP_BC_POP_BLOCK);
}

void mp_emit_bc_pop_except(emit_t *emit) {
    emit_bc_pre(emit, 0);
    emit_write_bytecode_byte(emit, MP_BC_POP_EXCEPT);
}

void mp_emit_bc_unary_op(emit_t *emit, mp_unary_op_t op) {
    emit_bc_pre(emit, 0);
    emit_write_bytecode_byte(emit, MP_BC_UNARY_OP_MULTI + op);
}

void mp_emit_bc_binary_op(emit_t *emit, mp_binary_op_t op) {
    bool invert = false;
    if (op == MP_BINARY_OP_NOT_IN) {
        invert = true;
        op = MP_BINARY_OP_IN;
    } else if (op == MP_BINARY_OP_IS_NOT) {
        invert = true;
        op = MP_BINARY_OP_IS;
    }
    emit_bc_pre(emit, -1);
    emit_write_bytecode_byte(emit, MP_BC_BINARY_OP_MULTI + op);
    if (invert) {
        emit_bc_pre(emit, 0);
        emit_write_bytecode_byte(emit, MP_BC_UNARY_OP_MULTI + MP_UNARY_OP_NOT);
    }
}

void mp_emit_bc_build(emit_t *emit, mp_uint_t n_args, int kind) {
    MP_STATIC_ASSERT(MP_BC_BUILD_TUPLE + MP_EMIT_BUILD_TUPLE == MP_BC_BUILD_TUPLE);
    MP_STATIC_ASSERT(MP_BC_BUILD_TUPLE + MP_EMIT_BUILD_LIST == MP_BC_BUILD_LIST);
    MP_STATIC_ASSERT(MP_BC_BUILD_TUPLE + MP_EMIT_BUILD_MAP == MP_BC_BUILD_MAP);
    MP_STATIC_ASSERT(MP_BC_BUILD_TUPLE + MP_EMIT_BUILD_SET == MP_BC_BUILD_SET);
    MP_STATIC_ASSERT(MP_BC_BUILD_TUPLE + MP_EMIT_BUILD_SLICE == MP_BC_BUILD_SLICE);
    if (kind == MP_EMIT_BUILD_MAP) {
        emit_bc_pre(emit, 1);
    } else {
        emit_bc_pre(emit, 1 - n_args);
    }
    emit_write_bytecode_byte_uint(emit, MP_BC_BUILD_TUPLE + kind, n_args);
}

void mp_emit_bc_store_map(emit_t *emit) {
    emit_bc_pre(emit, -2);
    emit_write_bytecode_byte(emit, MP_BC_STORE_MAP);
}

void mp_emit_bc_store_comp(emit_t *emit, scope_kind_t kind, mp_uint_t collection_stack_index) {
    int t;
    int n;
    if (kind == SCOPE_LIST_COMP) {
        n = 0;
        t = 0;
    } else if (!MICROPY_PY_BUILTINS_SET || kind == SCOPE_DICT_COMP) {
        n = 1;
        t = 1;
    } else if (MICROPY_PY_BUILTINS_SET) {
        n = 0;
        t = 2;
    }
    emit_bc_pre(emit, -1 - n);
    // the lower 2 bits of the opcode argument indicate the collection type
    emit_write_bytecode_byte_uint(emit, MP_BC_STORE_COMP, ((collection_stack_index + n) << 2) | t);
}

void mp_emit_bc_unpack_sequence(emit_t *emit, mp_uint_t n_args) {
    emit_bc_pre(emit, -1 + n_args);
    emit_write_bytecode_byte_uint(emit, MP_BC_UNPACK_SEQUENCE, n_args);
}

void mp_emit_bc_unpack_ex(emit_t *emit, mp_uint_t n_left, mp_uint_t n_right) {
    emit_bc_pre(emit, -1 + n_left + n_right + 1);
    emit_write_bytecode_byte_uint(emit, MP_BC_UNPACK_EX, n_left | (n_right << 8));
}

void mp_emit_bc_make_function(emit_t *emit, scope_t *scope, mp_uint_t n_pos_defaults, mp_uint_t n_kw_defaults) {
    if (n_pos_defaults == 0 && n_kw_defaults == 0) {
        emit_bc_pre(emit, 1);
        emit_write_bytecode_byte_raw_code(emit, MP_BC_MAKE_FUNCTION, scope->raw_code);
    } else {
        emit_bc_pre(emit, -1);
        emit_write_bytecode_byte_raw_code(emit, MP_BC_MAKE_FUNCTION_DEFARGS, scope->raw_code);
    }
}

void mp_emit_bc_make_closure(emit_t *emit, scope_t *scope, mp_uint_t n_closed_over, mp_uint_t n_pos_defaults, mp_uint_t n_kw_defaults) {
    if (n_pos_defaults == 0 && n_kw_defaults == 0) {
        emit_bc_pre(emit, -n_closed_over + 1);
        emit_write_bytecode_byte_raw_code(emit, MP_BC_MAKE_CLOSURE, scope->raw_code);
        emit_write_bytecode_byte(emit, n_closed_over);
    } else {
        assert(n_closed_over <= 255);
        emit_bc_pre(emit, -2 - (mp_int_t)n_closed_over + 1);
        emit_write_bytecode_byte_raw_code(emit, MP_BC_MAKE_CLOSURE_DEFARGS, scope->raw_code);
        emit_write_bytecode_byte(emit, n_closed_over);
    }
}

STATIC void emit_bc_call_function_method_helper(emit_t *emit, mp_int_t stack_adj, mp_uint_t bytecode_base, mp_uint_t n_positional, mp_uint_t n_keyword, mp_uint_t star_flags) {
    if (star_flags) {
        emit_bc_pre(emit, stack_adj - (mp_int_t)n_positional - 2 * (mp_int_t)n_keyword - 2);
        emit_write_bytecode_byte_uint(emit, bytecode_base + 1, (n_keyword << 8) | n_positional); // TODO make it 2 separate uints?
    } else {
        emit_bc_pre(emit, stack_adj - (mp_int_t)n_positional - 2 * (mp_int_t)n_keyword);
        emit_write_bytecode_byte_uint(emit, bytecode_base, (n_keyword << 8) | n_positional); // TODO make it 2 separate uints?
    }
}

void mp_emit_bc_call_function(emit_t *emit, mp_uint_t n_positional, mp_uint_t n_keyword, mp_uint_t star_flags) {
    emit_bc_call_function_method_helper(emit, 0, MP_BC_CALL_FUNCTION, n_positional, n_keyword, star_flags);
}

void mp_emit_bc_call_method(emit_t *emit, mp_uint_t n_positional, mp_uint_t n_keyword, mp_uint_t star_flags) {
    emit_bc_call_function_method_helper(emit, -1, MP_BC_CALL_METHOD, n_positional, n_keyword, star_flags);
}

void mp_emit_bc_return_value(emit_t *emit) {
    emit_bc_pre(emit, -1);
    emit->last_emit_was_return_value = true;
    emit_write_bytecode_byte(emit, MP_BC_RETURN_VALUE);
}

void mp_emit_bc_raise_varargs(emit_t *emit, mp_uint_t n_args) {
    assert(n_args <= 2);
    emit_bc_pre(emit, -n_args);
    emit_write_bytecode_byte_byte(emit, MP_BC_RAISE_VARARGS, n_args);
}

void mp_emit_bc_yield(emit_t *emit, int kind) {
    MP_STATIC_ASSERT(MP_BC_YIELD_VALUE + 1 == MP_BC_YIELD_FROM);
    emit_bc_pre(emit, -kind);
    emit->scope->scope_flags |= MP_SCOPE_FLAG_GENERATOR;
    emit_write_bytecode_byte(emit, MP_BC_YIELD_VALUE + kind);
}

void mp_emit_bc_start_except_handler(emit_t *emit) {
    mp_emit_bc_adjust_stack_size(emit, 4); // stack adjust for the exception instance, +3 for possible UNWIND_JUMP state
}

void mp_emit_bc_end_except_handler(emit_t *emit) {
    mp_emit_bc_adjust_stack_size(emit, -3); // stack adjust
}

#if MICROPY_EMIT_NATIVE
const emit_method_table_t emit_bc_method_table = {
    NULL, // set_native_type is never called when emitting bytecode
    mp_emit_bc_start_pass,
    mp_emit_bc_end_pass,
    mp_emit_bc_last_emit_was_return_value,
    mp_emit_bc_adjust_stack_size,
    mp_emit_bc_set_source_line,

    {
        mp_emit_bc_load_local,
        mp_emit_bc_load_global,
    },
    {
        mp_emit_bc_store_local,
        mp_emit_bc_store_global,
    },
    {
        mp_emit_bc_delete_local,
        mp_emit_bc_delete_global,
    },

    mp_emit_bc_label_assign,
    mp_emit_bc_import,
    mp_emit_bc_load_const_tok,
    mp_emit_bc_load_const_small_int,
    mp_emit_bc_load_const_str,
    mp_emit_bc_load_const_obj,
    mp_emit_bc_load_null,
    mp_emit_bc_load_method,
    mp_emit_bc_load_build_class,
    mp_emit_bc_subscr,
    mp_emit_bc_attr,
    mp_emit_bc_dup_top,
    mp_emit_bc_dup_top_two,
    mp_emit_bc_pop_top,
    mp_emit_bc_rot_two,
    mp_emit_bc_rot_three,
    mp_emit_bc_jump,
    mp_emit_bc_pop_jump_if,
    mp_emit_bc_jump_if_or_pop,
    mp_emit_bc_unwind_jump,
    mp_emit_bc_setup_block,
    mp_emit_bc_with_cleanup,
    mp_emit_bc_end_finally,
    mp_emit_bc_get_iter,
    mp_emit_bc_for_iter,
    mp_emit_bc_for_iter_end,
    mp_emit_bc_pop_block,
    mp_emit_bc_pop_except,
    mp_emit_bc_unary_op,
    mp_emit_bc_binary_op,
    mp_emit_bc_build,
    mp_emit_bc_store_map,
    mp_emit_bc_store_comp,
    mp_emit_bc_unpack_sequence,
    mp_emit_bc_unpack_ex,
    mp_emit_bc_make_function,
    mp_emit_bc_make_closure,
    mp_emit_bc_call_function,
    mp_emit_bc_call_method,
    mp_emit_bc_return_value,
    mp_emit_bc_raise_varargs,
    mp_emit_bc_yield,

    mp_emit_bc_start_except_handler,
    mp_emit_bc_end_except_handler,
};
#else
const mp_emit_method_table_id_ops_t mp_emit_bc_method_table_load_id_ops = {
    mp_emit_bc_load_local,
    mp_emit_bc_load_global,
};

const mp_emit_method_table_id_ops_t mp_emit_bc_method_table_store_id_ops = {
    mp_emit_bc_store_local,
    mp_emit_bc_store_global,
};

const mp_emit_method_table_id_ops_t mp_emit_bc_method_table_delete_id_ops = {
    mp_emit_bc_delete_local,
    mp_emit_bc_delete_global,
};
#endif

#endif //MICROPY_ENABLE_COMPILER