CircuitPython

Source code browser

Note: This site will be taken down by the end of the year

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
/*
 * This file is part of the MicroPython project, http://micropython.org/
 *
 * The MIT License (MIT)
 *
 * Copyright (c) 2013, 2014 Damien P. George
 * Copyright (c) 2017 Michael McWethy
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

#include "py/builtin.h"
#include "py/runtime.h"
#include "supervisor/shared/translate.h"

#if MICROPY_PY_BUILTINS_FLOAT

#include <math.h>

// M_PI is not part of the math.h standard and may not be defined
// And by defining our own we can ensure it uses the correct const format.
#define MP_PI MICROPY_FLOAT_CONST(3.14159265358979323846)


//| :mod:`math` --- mathematical functions
//| ========================================================
//|
//| .. module:: math
//|   :synopsis: mathematical functions
//|   :platform: SAMD21/SAMD51
//|
//| The `math` module provides some basic mathematical functions for
//| working with floating-point numbers.
//|

STATIC NORETURN void math_error(void) {
    mp_raise_ValueError(translate("math domain error"));
}

#define MATH_FUN_1(py_name, c_name) \
    STATIC mp_obj_t mp_math_ ## py_name(mp_obj_t x_obj) { return mp_obj_new_float(MICROPY_FLOAT_C_FUN(c_name)(mp_obj_get_float(x_obj))); } \
    STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_## py_name ## _obj, mp_math_ ## py_name);

#define MATH_FUN_2(py_name, c_name) \
    STATIC mp_obj_t mp_math_ ## py_name(mp_obj_t x_obj, mp_obj_t y_obj) { return mp_obj_new_float(MICROPY_FLOAT_C_FUN(c_name)(mp_obj_get_float(x_obj), mp_obj_get_float(y_obj))); } \
    STATIC MP_DEFINE_CONST_FUN_OBJ_2(mp_math_## py_name ## _obj, mp_math_ ## py_name);

#define MATH_FUN_1_TO_BOOL(py_name, c_name) \
    STATIC mp_obj_t mp_math_ ## py_name(mp_obj_t x_obj) { return mp_obj_new_bool(c_name(mp_obj_get_float(x_obj))); } \
    STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_## py_name ## _obj, mp_math_ ## py_name);

#define MATH_FUN_1_TO_INT(py_name, c_name) \
    STATIC mp_obj_t mp_math_ ## py_name(mp_obj_t x_obj) { return mp_obj_new_int_from_float(MICROPY_FLOAT_C_FUN(c_name)(mp_obj_get_float(x_obj))); } \
    STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_## py_name ## _obj, mp_math_ ## py_name);

#define MATH_FUN_1_ERRCOND(py_name, c_name, error_condition) \
    STATIC mp_obj_t mp_math_ ## py_name(mp_obj_t x_obj) { \
        mp_float_t x = mp_obj_get_float(x_obj); \
        if (error_condition) { \
            math_error(); \
        } \
        return mp_obj_new_float(MICROPY_FLOAT_C_FUN(c_name)(x)); \
    } \
    STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_## py_name ## _obj, mp_math_ ## py_name);

#ifdef MP_NEED_LOG2
// 1.442695040888963407354163704 is 1/_M_LN2
#define log2(x) (log(x) * 1.442695040888963407354163704)
#endif
  //| Constants
  //| ---------
  //|
  //| .. data:: e
  //|
  //|    base of the natural logarithm
  //|
  //| .. data:: pi
  //|
  //|    the ratio of a circle's circumference to its diameter
  //|

  //| Functions
  //| ---------
  //|
  //| .. function:: acos(x)
  //|
  //|   Return the inverse cosine of ``x``.
  //|
  //| .. function:: asin(x)
  //|
  //|   Return the inverse sine of ``x``.
  //|
  //| .. function:: atan(x)
  //|
  //|   Return the inverse tangent of ``x``.
  //|
  //| .. function:: atan2(y,x)
  //|
  //|   Return the principal value of the inverse tangent of ``y/x``.
  //|
  //| .. function:: ceil(x)
  //|
  //|   Return an integer, being ``x`` rounded towards positive infinity.
  //|
  //| .. function:: copysign(x,y)
  //|
  //|   Return ``x`` with the sign of ``y``.
  //|
  //| .. function:: cos(x)
  //|
  //|   Return the cosine of ``x``.
  //|
  //| .. function:: degrees(x)
  //|
  //|   Return radians ``x`` converted to degrees.
  //|
  //| .. function:: exp(x)
  //|
  //|   Return the exponential of ``x``.
  //|
  //| .. function:: fabs(x)
  //|
  //|   Return the absolute value of ``x``.
  //|
  //| .. function:: floor(x)
  //|
  //|   Return an integer, being ``x`` rounded towards negative infinity.
  //|
  //| .. function:: fmod(x,y)
  //|
  //|   Return the remainder of ``x/y``.
  //|
  //| .. function:: frexp(x)
  //|
  //|   Decomposes a floating-point number into its mantissa and exponent.
  //|   The returned value is the tuple ``(m, e)`` such that ``x == m * 2**e``
  //|   exactly.  If ``x == 0`` then the function returns ``(0.0, 0)``, otherwise
  //|   the relation ``0.5 <= abs(m) < 1`` holds.
  //|
  //| .. function:: isfinite(x)
  //|
  //|   Return ``True`` if ``x`` is finite.
  //|
  //| .. function:: isinf(x)
  //|
  //|   Return ``True`` if ``x`` is infinite.
  //|
  //| .. function:: isnan(x)
  //|
  //|   Return ``True`` if ``x`` is not-a-number
  //|
  //| .. function:: ldexp(x, exp)
  //|
  //|   Return ``x * (2**exp)``.
  //|
  //| .. function:: modf(x)
  //|
  //|   Return a tuple of two floats, being the fractional and integral parts of
  //|   ``x``.  Both return values have the same sign as ``x``.
  //|
  //| .. function:: pow(x, y)
  //|
  //|   Returns ``x`` to the power of ``y``.
  //|
  //| .. function:: radians(x)
  //|
  //|   Return degrees ``x`` converted to radians.
  //|
  //| .. function:: sin(x)
  //|
  //|   Return the sine of ``x``.
  //|
  //| .. function:: sqrt(x)
  //|
  //|   Returns the square root of ``x``.
  //|
  //| .. function:: tan(x)
  //|
  //|   Return the tangent of ``x``.
  //|
  //| .. function:: trunc(x)
  //|
  //|   Return an integer, being ``x`` rounded towards 0.
  //|
 MATH_FUN_1_ERRCOND(sqrt, sqrt, (x < (mp_float_t)0.0))

MATH_FUN_2(pow, pow)

MATH_FUN_1(exp, exp)
#if MICROPY_PY_MATH_SPECIAL_FUNCTIONS
// Special functions
// -----------------
//
// .. function:: expm1(x)
//
//   Return ``exp(x) - 1``.
//
MATH_FUN_1(expm1, expm1)

// .. function:: log2(x)
//
//   Return the base-2 logarithm of ``x``.
//
MATH_FUN_1_ERRCOND(log2, log2, (x <= (mp_float_t)0.0))

// .. function:: log10(x)
//
//   Return the base-10 logarithm of ``x``.
//
MATH_FUN_1_ERRCOND(log10, log10, (x <= (mp_float_t)0.0))

// .. function:: cosh(x)
//
//   Return the hyperbolic cosine of ``x``.
//
MATH_FUN_1(cosh, cosh)

// .. function:: sinh(x)
//
//   Return the hyperbolic sine of ``x``.
//
MATH_FUN_1(sinh, sinh)

// .. function:: tanh(x)
//
//   Return the hyperbolic tangent of ``x``.
//
MATH_FUN_1(tanh, tanh)

// .. function:: acosh(x)
//
//   Return the inverse hyperbolic cosine of ``x``.
//
MATH_FUN_1(acosh, acosh)

// .. function:: asinh(x)
//
//   Return the inverse hyperbolic sine of ``x``.
//
MATH_FUN_1(asinh, asinh)

// .. function:: atanh(x)
//
//   Return the inverse hyperbolic tangent of ``x``.
//
MATH_FUN_1(atanh, atanh)
#endif

MATH_FUN_1(cos, cos)

MATH_FUN_1(sin, sin)

MATH_FUN_1(tan, tan)

MATH_FUN_1(acos, acos)

MATH_FUN_1(asin, asin)

MATH_FUN_1(atan, atan)

MATH_FUN_2(atan2, atan2)

MATH_FUN_1_TO_INT(ceil, ceil)

MATH_FUN_2(copysign, copysign)

MATH_FUN_1(fabs, fabs)

MATH_FUN_1_TO_INT(floor, floor) //TODO: delegate to x.__floor__() if x is not a float

MATH_FUN_2(fmod, fmod)

MATH_FUN_1_TO_BOOL(isfinite, isfinite)

MATH_FUN_1_TO_BOOL(isinf, isinf)

MATH_FUN_1_TO_BOOL(isnan, isnan)

MATH_FUN_1_TO_INT(trunc, trunc)

MATH_FUN_2(ldexp, ldexp)
#if MICROPY_PY_MATH_SPECIAL_FUNCTIONS

// .. function:: erf(x)
//
//   Return the error function of ``x``.
//
MATH_FUN_1(erf, erf)

// .. function:: erfc(x)
//
//   Return the complementary error function of ``x``.
//
MATH_FUN_1(erfc, erfc)

// .. function:: gamma(x)
//
//   Return the gamma function of ``x``.
//
MATH_FUN_1(gamma, tgamma)

// .. function:: lgamma(x)
//
//   Return the natural logarithm of the gamma function of ``x``.
//
MATH_FUN_1(lgamma, lgamma)
#endif
//TODO: factorial, fsum

// Function that takes a variable number of arguments

// log(x[, base])
STATIC mp_obj_t mp_math_log(size_t n_args, const mp_obj_t *args) {
    mp_float_t x = mp_obj_get_float(args[0]);
    if (x <= (mp_float_t)0.0) {
        math_error();
    }
    mp_float_t l = MICROPY_FLOAT_C_FUN(log)(x);
    if (n_args == 1) {
        return mp_obj_new_float(l);
    } else {
        mp_float_t base = mp_obj_get_float(args[1]);
        if (base <= (mp_float_t)0.0) {
            math_error();
// Turn off warning when comparing exactly with integral value 1.0
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wfloat-equal"
        } else if (base == (mp_float_t)1.0) {
#pragma GCC diagnostic pop
            mp_raise_msg(&mp_type_ZeroDivisionError, translate("division by zero"));
        }
        return mp_obj_new_float(l / MICROPY_FLOAT_C_FUN(log)(base));
    }
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(mp_math_log_obj, 1, 2, mp_math_log);

// Functions that return a tuple


STATIC mp_obj_t mp_math_frexp(mp_obj_t x_obj) {
    int int_exponent = 0;
    mp_float_t significand = MICROPY_FLOAT_C_FUN(frexp)(mp_obj_get_float(x_obj), &int_exponent);
    mp_obj_t tuple[2];
    tuple[0] = mp_obj_new_float(significand);
    tuple[1] = mp_obj_new_int(int_exponent);
    return mp_obj_new_tuple(2, tuple);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_frexp_obj, mp_math_frexp);

STATIC mp_obj_t mp_math_modf(mp_obj_t x_obj) {
    mp_float_t int_part = 0.0;
    mp_float_t fractional_part = MICROPY_FLOAT_C_FUN(modf)(mp_obj_get_float(x_obj), &int_part);
    mp_obj_t tuple[2];
    tuple[0] = mp_obj_new_float(fractional_part);
    tuple[1] = mp_obj_new_float(int_part);
    return mp_obj_new_tuple(2, tuple);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_modf_obj, mp_math_modf);

// Angular conversions


STATIC mp_obj_t mp_math_radians(mp_obj_t x_obj) {
    return mp_obj_new_float(mp_obj_get_float(x_obj) * (MP_PI / MICROPY_FLOAT_CONST(180.0)));
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_radians_obj, mp_math_radians);


STATIC mp_obj_t mp_math_degrees(mp_obj_t x_obj) {
    return mp_obj_new_float(mp_obj_get_float(x_obj) * (MICROPY_FLOAT_CONST(180.0) / MP_PI));
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_degrees_obj, mp_math_degrees);

STATIC const mp_rom_map_elem_t mp_module_math_globals_table[] = {
    { MP_ROM_QSTR(MP_QSTR___name__), MP_ROM_QSTR(MP_QSTR_math) },
    { MP_ROM_QSTR(MP_QSTR_e), mp_const_float_e },
    { MP_ROM_QSTR(MP_QSTR_pi), mp_const_float_pi },
    { MP_ROM_QSTR(MP_QSTR_sqrt), MP_ROM_PTR(&mp_math_sqrt_obj) },
    { MP_ROM_QSTR(MP_QSTR_pow), MP_ROM_PTR(&mp_math_pow_obj) },
    { MP_ROM_QSTR(MP_QSTR_exp), MP_ROM_PTR(&mp_math_exp_obj) },
    #if MICROPY_PY_MATH_SPECIAL_FUNCTIONS
    { MP_ROM_QSTR(MP_QSTR_expm1), MP_ROM_PTR(&mp_math_expm1_obj) },
    #endif
    { MP_ROM_QSTR(MP_QSTR_log), MP_ROM_PTR(&mp_math_log_obj) },
    #if MICROPY_PY_MATH_SPECIAL_FUNCTIONS
    { MP_ROM_QSTR(MP_QSTR_log2), MP_ROM_PTR(&mp_math_log2_obj) },
    { MP_ROM_QSTR(MP_QSTR_log10), MP_ROM_PTR(&mp_math_log10_obj) },
    { MP_ROM_QSTR(MP_QSTR_cosh), MP_ROM_PTR(&mp_math_cosh_obj) },
    { MP_ROM_QSTR(MP_QSTR_sinh), MP_ROM_PTR(&mp_math_sinh_obj) },
    { MP_ROM_QSTR(MP_QSTR_tanh), MP_ROM_PTR(&mp_math_tanh_obj) },
    { MP_ROM_QSTR(MP_QSTR_acosh), MP_ROM_PTR(&mp_math_acosh_obj) },
    { MP_ROM_QSTR(MP_QSTR_asinh), MP_ROM_PTR(&mp_math_asinh_obj) },
    { MP_ROM_QSTR(MP_QSTR_atanh), MP_ROM_PTR(&mp_math_atanh_obj) },
    #endif
    { MP_ROM_QSTR(MP_QSTR_cos), MP_ROM_PTR(&mp_math_cos_obj) },
    { MP_ROM_QSTR(MP_QSTR_sin), MP_ROM_PTR(&mp_math_sin_obj) },
    { MP_ROM_QSTR(MP_QSTR_tan), MP_ROM_PTR(&mp_math_tan_obj) },
    { MP_ROM_QSTR(MP_QSTR_acos), MP_ROM_PTR(&mp_math_acos_obj) },
    { MP_ROM_QSTR(MP_QSTR_asin), MP_ROM_PTR(&mp_math_asin_obj) },
    { MP_ROM_QSTR(MP_QSTR_atan), MP_ROM_PTR(&mp_math_atan_obj) },
    { MP_ROM_QSTR(MP_QSTR_atan2), MP_ROM_PTR(&mp_math_atan2_obj) },
    { MP_ROM_QSTR(MP_QSTR_ceil), MP_ROM_PTR(&mp_math_ceil_obj) },
    { MP_ROM_QSTR(MP_QSTR_copysign), MP_ROM_PTR(&mp_math_copysign_obj) },
    { MP_ROM_QSTR(MP_QSTR_fabs), MP_ROM_PTR(&mp_math_fabs_obj) },
    { MP_ROM_QSTR(MP_QSTR_floor), MP_ROM_PTR(&mp_math_floor_obj) },
    { MP_ROM_QSTR(MP_QSTR_fmod), MP_ROM_PTR(&mp_math_fmod_obj) },
    { MP_ROM_QSTR(MP_QSTR_frexp), MP_ROM_PTR(&mp_math_frexp_obj) },
    { MP_ROM_QSTR(MP_QSTR_ldexp), MP_ROM_PTR(&mp_math_ldexp_obj) },
    { MP_ROM_QSTR(MP_QSTR_modf), MP_ROM_PTR(&mp_math_modf_obj) },
    { MP_ROM_QSTR(MP_QSTR_isfinite), MP_ROM_PTR(&mp_math_isfinite_obj) },
    { MP_ROM_QSTR(MP_QSTR_isinf), MP_ROM_PTR(&mp_math_isinf_obj) },
    { MP_ROM_QSTR(MP_QSTR_isnan), MP_ROM_PTR(&mp_math_isnan_obj) },
    { MP_ROM_QSTR(MP_QSTR_trunc), MP_ROM_PTR(&mp_math_trunc_obj) },
    { MP_ROM_QSTR(MP_QSTR_radians), MP_ROM_PTR(&mp_math_radians_obj) },
    { MP_ROM_QSTR(MP_QSTR_degrees), MP_ROM_PTR(&mp_math_degrees_obj) },
    #if MICROPY_PY_MATH_SPECIAL_FUNCTIONS
    { MP_ROM_QSTR(MP_QSTR_erf), MP_ROM_PTR(&mp_math_erf_obj) },
    { MP_ROM_QSTR(MP_QSTR_erfc), MP_ROM_PTR(&mp_math_erfc_obj) },
    { MP_ROM_QSTR(MP_QSTR_gamma), MP_ROM_PTR(&mp_math_gamma_obj) },
    { MP_ROM_QSTR(MP_QSTR_lgamma), MP_ROM_PTR(&mp_math_lgamma_obj) },
    #endif
};

STATIC MP_DEFINE_CONST_DICT(mp_module_math_globals, mp_module_math_globals_table);

const mp_obj_module_t math_module = {
    .base = { &mp_type_module },
    .globals = (mp_obj_dict_t*)&mp_module_math_globals,
};

#endif // MICROPY_PY_BUILTINS_FLOAT && MICROPY_PY_MATH